
Lestrade Type Inspector Source with comments

Randall Holmes

1/2/2020: eliminated some redundant actions in Cleantype and
equaltypes functions. 8/16/2019 2 pm This is the literate

programming version with labelled Lestrade execution blocks.
Currently having qualms about hypothetical rewrites. Fixed

margin crash. Prettyprints command lines. Compact type display
toggle. Removed restraints on saved move names. Tabulates type
and definition computations. Making saved theories complete, not

just move 0 declarations. Aggressive backups to avoid file
disasters: make sure there is a folder called backups in the folder
where Lestrade is run. Supercompact display generating scripts

with just command lines is supported. Deferred definition facility
implemented in a preliminary form; this might be dangerous.

This document is the working source for the Lestrade Type Inspector in ML.
If the initial % above is deleted (without deleting the following ML comment
opener), the file should work under the appropriate ML interpreter. The ML
text immediately below indicates how to adapt the file to run in Moscow ML
2.10 or PolyML; the default is Moscow ML 2.01.

This is now the source of the working file lestrade.sml: all edits are made
here to the current version of Lestrade.

Please note that it is just the dated comments that are in a tiny typeface:
when the code starts below, it is visible!

*)

(* 8/16/2019 literate version*)

(* This is the ML source for the Lestrade Type Inspector. *)

(* moscow ml preamble *)

fun desome x = x;

(* BEGIN for PolyML decomment this;

for Moscow ML 2.10 in addition comment out first line

open PolyML

1

fun desome (SOME x) = x |

desome NONE = "";

END *)

fun Inputline x = desome(TextIO.inputLine x);

(* end moscow ml preamble *)

(* smlnj premable

fun desome x = x;

fun makestring s = Int.toString s;

(* BEGIN for PolyML decomment this;

for Moscow ML 2.10 in addition comment out first line

open PolyML *)

fun desome (SOME x) = x |

desome NONE = "";

(* END *)

fun Inputline x = desome(TextIO.inputLine x);

end smlnj preamble *)

(*

*)

(*

dated notes

1/9/2020 I am going to edit this code carefully to make sure I have consistent expectations about serial numbers, preparatory to trying to get the let update to work.

1/2/2020 I want to solve the definition explosion problem by storing definition bodies as let terms. In my first pass, I was storing entire types

as let terms, but this will create a constant problem of unpacking the normally used parts of types. What explodes is the body of a definition, and this

is also seldom used. This makes it seem that my let terms should be of ML type Entity, not ML type Type as in my first pass.

There is a local versus global problem: currently, the substitution process automatically explodes definitions in the next move, a bottom up process. I want this not to happen

in definition bodies, to be replaced with a top down let term construction. But I evidently still want the local expansion process in types which are not in definition

bodies?

I have done significant repairs to avoid operations on definition bodies which are being discarded, in the Cleartype and equaltype ML functions. There might be further

corrections to be made along these lines?

2

8/16/2019 Editing comments, very likely no code changes. I did make some small code changes to ImportTheory, and added type checks

to equalentities in the case of deferred definitions.

There is a bug in readfile depth in readback and readkoob. This won’t cause any bad proofs, but it ought to be fixed sometime.

A user command which extends the world list by adding a new empty world 0 might be very useful. This would be handy when passing to talk of models of the very theory you are working in. ImportTheory can achieve a similar end, but this would be more economical. It is also very easy, since world numbering is entirely relative? But it would require systematic changes

to WORLDNAMES!

I should improve the deferred definition feature so that it can complete deferred definitions by matching construction arguments, and perhaps

in other situations (target the matchings which the implicit argument feature can handle?). Extreme caution is needed because declaration checks

in define take advantage of limitations on what a user can enter. In particular, we have to watch for free occurrences of bound variables sneaking

into redefinitions.

I observe that the function addtoworld which adds an item to a move and reindexes it is declared, but never used.

I should set things up to make it so that readback and readkoob will not run if the user has paused.

8/16/2019 the deferred definition feature is installed: use with caution, it may be dangerous. The command ddefine with the same conditions

on its parameters as postulate introduces a defined notion whose definition is eventually to be inferred by the matching features of the prover.

Matching of the yet-to-be-defined notion as an abstraction argument with an abstraction does not yet work.

This involved internalizing a version of the define command into the central logic engine; this is not a trivial maneuver, and may yet be bugged. Some prerequisites

for the define command had to be moved (or copied) into the logic engine.

I also installed a user command clearbreakout in the interface (to be used with caution): the deferred definition matching mechanism does not

work if BREAKOUT is true (since a version of a user command is being invoked, and we want to know if it raised errors), and the user may know that

previous error conditions are harmless.

When the deferred definition is actually made it is made without implicit arguments (the original deferred definition is allowed to have implicit arguments).

The implicit argument pattern can of course be restored by making another definition. It also has to be made in the move where the matching occurs, or one

may fail to expand notions that need to be expanded in the proposed definition.

Installing the ability to define an identifier directly as a lambda-term would solve the problem of matching yet-to-be-defined abstractions with other abstractions

or lambda terms at the same time. This would require automatic generation of a suitable argument list from the lambda-term.

It is also important to notice that the term matching a yet-to-be-defined notion must make sense in the context

in which the yet-to-be-defined notion was actually proposed.

Notice that some code had to be moved around, which may mean that a pass with rewriting of comments on local ML functions is needed, since

some are now in unexpected places.

I do believe this version is quite safe (or at least, as safe as the previous version) as long as the deferred definition feature is not used.

2 pm made the truncateto function more exact, to defend against circular definitions being accepted by Define0.

8/10/2019 working on version with deferred definitions.

8/8/2019

This is just code optimization. Notably, I removed some dupication of effort in findimplitargs, but it does not

seem to affect the bottlenecks in performance.

8/7/2019

technical refinement to searches of long lists. I am not sure whether it actually improves performance. I seem to be adapting well to readbook and readkoob :-)

8/6/2019

Installing aggressive creation of backups to avoid destroying files when readback is run. Also trying out readbook and readkoob instead of readfile2 and readback2.

A directory called backups is now required to exist for Lestrade to execute the readback or readkoob command: an I/O error will be raised if this directory does not exist.

Installed supercompact display mode which produces scripts with only the command lines (by suppressing the action of showdec completely). goal and test commands

will still echo type information to scripts.

8/5/2019

Saved theories now contain all theory information, not just move 0 declarations, so load can be used more effectively to avoid running slow logs repeatedly.

More funny business about rewrites in moves of positive index. The functions for making identifiers in a saved move adjoinable with the context at the time

the move is re-opened were never set up to accommodate rewrites. The situation with hypothetical rewrites is fraught enough that I am simply not allowing

name extensions to correct such moves: if any need for name revision is detected in opening a move with native rewrites, an error will be raised.

8/3/2019 Eliminated the name collision error message sometimes raised by the open command, which is as far as I can tell simply

a distraction.

7/24/2019 No essential update. Fixed a bug: the clearallcaches function was not clearing caches!

7/22/2019 Problem with saved move management identified. When a move is cleared which has been saved, moves subsequent to that one

need also to be cleared. A similar situation can arise in the save command itself. This version now includes tabulation of type and

definition computations, though I do not know whether this actually helps.

7/21/2019 Removed restraints from names of saved moves. This is important for restraining definition expansion. A saved move

can have its default name. The only remnant of this is that clearcurrent will not load a saved move with its default name; it

will clear the next move as expected. Also ClearAll now behaves correctly when there are saved moves. This is a real demonstration

that this feature is needed. There is another version which adds tabulation for the type and definition functions, which I tried

out for improved performance when the Zermelo proof was being very slow; this does not seem to have been the issue. But it might be wanted.

The goal and test commands have been added. goal will display a type (usually the type of a proposition to be proved). test will display

an argument and display its type. These are very useful tools for incremental development of proofs without rerunning the entire file; both are

3

important for commenting on proof files (already noted on the 13th).

7/19/2019 removed echo from showdec. made compact display default.

7/18/2019 minor change to margin relaxation.

7/17/2019 This version has automatic prettyprinting of command lines. There are still some issues with it.

Second update adds the command {\tt compactdisplay}, which toggles between showing definition bodies in type declarations (and so in log files) and not showing them.

This is hugely advantageous for reading log files.

7/15/2019 This version makes showdec a persistent logged command.

7/13/2019 This version adds new interface commands goal and test. goal X just causes the type X to be displayed. test X causes the argument X to be displayed

with its type.

7/10/2019 This version fixes the crash which happened when indentations became longer than the margin: the margin is now automatically increased in this case.

6/21/2019 Still musing about hypothetical rewrites. I think the double close option is not the best one: more sublty, simply block the declaration commands

in the presence of hypothetical rewrites. Make it so that any command which records declarations in the previous move is blocked if there are rewrites in

the next move. Changed code as indicated. This should mean that it is now possible to save environments in which one has played with hypothetical rewrites

and return to them without hazard.

6/11/2019 Now contains code for a version of the Close command which clears the next move after closing if it finds any rewrites: the idea being

that exporting anything from that next move to the new current move would bring in dependencies on hypothetical rewrites which are not recorded.

Ideally, pruning of the current move could be restricted to things appearing after the declaration of the rewrite, but that is a good deal of work, and saving

moves before declaring hypothetical rewrites would defend against loss of data (I checked this and I think it will: it should be reflex to save a context

if one wants to introduce hypothetical rewrites, as that context will be erased when you return to it).

Now commented out the code in rewritep and Rewrited so that one can declare hypothetical rewrites -- with the effect that

contexts in which hypothetical rewrites have been declared will be erased as untrustworthy by the Close command. This ought at some

point to be tested to see that it actually works, which will be a bit involved.

6/1/2019 There is a difficulty with rewrite rules. The problem is that dependencies of definitions and declarations

on rewrite rules are not recorded, so it should either be impossible to declare hypothetical rewrite rules or declarations

which might depend on them must be discarded when a world is closed. I dealt with this by allowing rewritep and Rewrited commands

to be issued only at the top level. With a little care, the approach with hypothetical rewrites allowed but things possibly depending on

them discarded can probably be supported. The machinery to maintain rewrite rule lists for each world remains in place.

Philosophically, I think allowing and trying to manage rewrite rule dependencies would be a fundamental complication.

7/19/2018 planning to develop a depostulate command. This takes an identifier already declared by postulate and attempts to define it;

the definition may include special identifiers which are declared or defined in such a way as to make things type correctly: these will be

constructed or defined with special names which signal that they are goals in a deconstruction process under way, and should themselves

be deconstructed.

This requires two new kinds of identifier, matchable undeclared identifiers (ending or beginning with ??, possibly) which when declared or defined

are renamed ending with ? -- identifiers ending in ? being fully privileged, the ? being a signal that these were created in a deconstruction. The deep technical issue is what kind of matching effecting declarations of ? identifiers can occur. This is important for usefulness of the prover, since it allows

semi-automation of goal directed reasoning. I am hoping that the matching of ?? identifiers which leads to declaration of ? identifiers

can happen entirely in equaltypes (really in equalentities, it seems). The way in which special identifiers are labelled is modifiable:

having matchable ones starting with ! and ones to be further deconstructed starting with ? recommends itself.

5/14/2018 Lestrade execution blocks now should begin with \begin{verbatim}Lestrade execution:

For the moment, it will still read files with just \begin{verbatim}, but will correct them.

3/29/2018 fixed very minor issue with attachment of quit to ends of new LaTeX log files.

11/23/2017 Purely internal issue, fixed badly written recursion in parsing of user entered abstraction terms.

11/22/2017 added ability to suppress definition bodies in displays, useful when definition expansion gets out of hand.

10/29/17 rewrited didn’t work for mysterious reasons. I reimplemented it in a way which

does clearly work, but this does mean that the postulate and rewritep commands at least for

the time being can declare extended identifiers.

10/28/17 fix to rewrites to allow rewriting of complex constant terms.

10/23/2017 I ought to deal with the point that in fact rewrite patterns are never atomic terms. There are no errors due to

this, but there are unnecessary tests. Extraneous code commented out.

A philosophical point with no code yet. Rewriting inside lambda terms might be supportable, but it would be necessary to identify

terms with bound variables in which which might match a pattern with appropriate instantiation of the variable,

in order to block rewrites which might break confluence. There is also the issue that perhaps {\tt fullrewrite} should

work from the top down.

10/22/2017 No code change: describing a feature to be implemented.

A true analogue to the Automath context feature would be an ability

to abbreviate lists of arguments.

The idea is that one could use the command {\tt vector} followed by

an identifier then by a list of arguments to declare a name for

that list of arguments. This name would be

used only at term input: the idea is that the tokenize function would

expand an occurrence of a vector identifier into the appropriate

stream of tokens with alternating commas derived

from its definition. Vectors could then appear at any point in an argument list

(including argument lists in bound variable terms), and

no prover function would ever handle them. The only additional attention required would

be to maintain a list of lists of vectors (analogous for example to the list of lists of rewrites)

maintained in parallel with the context, and to make sure that one could not declare

an identifier conflicting with a vector or a vector conflicting with an identifier.

The only question is whether this is really useful: it certainly would be analogous

4

to the context mechanism of Automath, and it might be useful in translations of

Automath books. Would it be likely to be used in native Lestrade books?

I further note that the new bound variable features should make translation

of Automath books far easier, and I should work on translations with this in mind.

10/20/2017 tidied up readback commands and testing for end of line in commands.

I believe it may be the case that it is now never necessary to open a move: it may be the case that the bound variable

term features support everything that can be done with moves. I’m not certain.

10/19/2017: The declare command will now take a function sort. Function sorts are represented with bound variables taken from the next move and

body of the abstraction simply an object term. This has the same unprincipled character as use of lambda terms as function arguments,

in that it subverts the move model, but we should understand just as in the previous case that variables in the next move are being in effect

cloned to deeper moves which are not officially being opened.

10/17/2017: moved most of the stray utilities manipulating the master ML types to one place right after the master declaration.

10/17/2017: possible extensions. It would not be hard to enable parsing of function sorts

in much the way that λ-terms were managed, and extend

the {\tt declare} command to allow declaration of function variables.

It would also not be hard to allow declarations of vectors

(atomic abbreviations for repeatedly used argument lists;

a vector could only appear as the tail of an argument list?

Vectors would play a role similar to that of Automath contexts.

10/16/2017: I finished commenting the parser. 8 pm commented the user commands in {\tt readline}.

10/15/2017 I think I fixed multisubstypelist. I believe that I simply had a misconception.

MAJOR UPDATE: I have installed parsing of lambda terms as arguments. I have some concerns about whether some ML functions

may not have cases for lambda terms since they are not expected to be in input. However, simple cases appear to work. The format

of a lambda term is a list of variables separated by commas, declared at the next move, followed by => followed by the body

of the lambda abstraction, all enclosed in brackets.

10/14/2017: I have curbed the excesses of namespace numbering. The new variable Maxfreshindex keeps track of the largest value ever taken by Freshindex; commands that open new environments set NAMESERIAL to Maxfreshindex.

10/8/2017 headrewrite acts on rewritten atomic constants as well, confluence issue.

10/7/2017 tabulated the fullrewrite and headrewrite commands, so execution behavior should be improved.

This needs to be tested. Computing Fibonacci numbers would be a good example.

There is no change whatever in the user interface or observed behavior (barring bugs): this is an internal efficiency issue.

Variable generation in rewrite commands retuned.

9/17/2017 Starting work on streamlining the rewritep and rewrited commands.

Successfully got it to automatically declare the variable name

formerly given as final argument to rewritep. A side effect is that one now

can declare variables which are "extended". Rewrited should also be fixed at this point.

The rewritep and rewrited commands no longer require the predicate argument or the

final variable separated by a colon; these commands generate their own auxiliary variables.

They still need caching for efficient execution. rewrited needs to be tested:

there seem to be no tests in my current corpus.

9/14/2017 The rewrite commands need attention. The predicate variable used

should be automatically generated, as the evidence for this predicate holding of

the rewrite target is. Moreover, the names should perhaps be automatically generated

as well (from the name for the object witnessing the rewrite rule, perhaps).

The rewrited rule should perhaps apply only where the rewrite source and target are of sorts

other than prop and type.

9/10/2017 Now readily adaptable for different versions of ML

9/4/2017 projected improvements

the rewrite function should be tabulated for better execution behavior.

the nasty task of adding user entered lambda-terms (with sort inference)

the fairly easy task of adding identifiers representing argument lists -- this is closer to the Automath context device.

when there are both .lti and .tex files with the same name, the readfile commands ought to complain?

9/4/2017 minor edit -- changed a couple of references to ML types which had

been incorrectly changed to "sort" on 9/3. The terminology in the comments and

the Lestrade output should now be in line with the terminology in current

documentation, though the old terminology is still reflected in names of ML

types and functions. For this purpose we provide a translation table

old new

entity object

abstraction function

type sort

world move

current world next move

parent world last move (sometimes "current move", but not here).

5

The new terminology "current move" for the last move would be confusing given

the old terminology "current world" for the next move. The new terminology "entity"

for "object or function" of course conflicts with the old terminology "entity" for

object.

9/3/2017 editing pass for readability.

I am systematically replacing or supplementing the old

terms entity, abstraction, world, and type with

object, function, move, and sort in comments and Lestrade messages

but not in code.

9/2/2017 slight fix to one line so that the code can be embedded in the manual

8/30/2017 no code change beyond the development of readfile2 which handles LaTeX

documents. Removing most old comments,

other than those which seem to represent cautions or needs for testing.

I am concerned about the scope of the rewrite commands: I am contemplating restricting

the scope of rewrited (not of rewritep) to types (in tau) and (that p).

The rationale is that the formulation of ambiguous TST in foundationsintro.tex

becomes contradictory (I think) if rewrited can be applied to the constructor Ambiguity.

8/4/2017 working on alternative readfile commands which can handle LeTeX documents,

executing whatever appears in verbatim blocks. It is implemented!

Command readfile2 handles .tex files. The .tex files used need to end with

quit after the end of the document. I made it so that readfile2 will continue

reading after a line with \ at the end. This feature is now preserved in the output.

1/11/17 The Poly/ML version now pretty prints with periods instead of spaces.

This version is slightly modified so that it executes scripts generated by the Poly/ML version.

WARNING: only the 2.01 version is up to date: I need to update the

other versions.

12/2/2016 disabled the code restoring prop/type symmetry

re the rewrite command. It is still there in a comment.

11/30/16 Matching of lambda-terms is installed. I’m confident that it is correct but unsure how to test it. Would it make

sense to allow new defined expressions in patterns which will expand to lambda-terms which can be matched? It

also surely has effects in implicit argument matching.

Think about allowing definition expansion in patterns. I have experimentally done this. Testing becomes advisable.

Some rather elaborate testing with either implicit arguments or rewriting will be required to see whether

lambda term matching actually works. Elaborate testing of the rewrite feature is probably a good idea anyway.

11/29/2016 All sorts of name conflict error checks are still in the code but should never actually be invoked.

11/28/2016 The refined definitions of stringdef and stringage are probably no longer

needed (name conflicts can no longer actually occur), but I’ll leave them as they are for the moment.

Instead of setting up readfile to nest, I set up the load and import commands so that their error messages

tell you which files need to be read before the given file can be read successfully. I don’t really want

readfile commands issued inside scripts.

11/15/2016 restored symmetry between prop and type in the rewrite feature by allowing one place

type constructors to play the same role as predicates (one place proposition constructors). [this was subsequently retracted]

11/2 (no code change) At this point, the implied argument inference function is exactly what it will

ever be, mod debugging. More powerful recursions on nested function types/lambda terms extending

matching and type computations would automatically make it stronger. In a certain sense, I am at a principled

stopping point: with the exception of one place in the implicit argument inference function, I never do structural

recursion on variable binding terms in a way which takes into account the local types of bound variables. Any

further progress on implicit argument inference would involve such recursion in one way or another. It is not

clear to me that practical reasoning in the system requires more.

Another note: it is intellectually sound to let the reindexing feature scrub unwanted definition information

from types, because in fact it is completely ignored in determining whether types are the same: equaltypes is only

used with the "true" option when lambda terms are being compared. I do think I know where the leak is, but I do not

need to fix it in the implicit argument inference function.

Another note: the rewriting function, at my leisure, should be tabulated for sensible recursive behavior.

11/2 (no code change) A practical idea: add an optional further argument to

the declaration commands for comments, which would be displayed by showdec. Alternatively,

add a command specifically for commenting on declarations.

11/1 further note (no code change) Think about elaborate features which need testing.

These include: the last iteration of implicit argument inference.

The rewriting feature: notably rewrited. The rewriting feature would ultimately need

refinements of its execution model (tables of previously computed rewrites to avoid recursion performance

problems).

The next upgrade is the axiomatic dependence and implementation idea. It might be

further improved by having an option to give an implementation but not allow its innards

to be used (abstract data type security). This might be done neatly by changing the dependencies

of the constructed object but not its actual type information (perhaps hide the implementation

in the dependency information).

The performance issues which are encountered with any attempt to change the isapp test

6

in entsubs are interesting.

11/1 (no code change yet) At this point no new direct expansion of findimplicitargs is needed. Improvements

in substitution and matching will now automatically drive better implicit argument deduction.

(no code change so far) Introduce a command which allows an implementation of a primitive

as a defined object of the same type to be given.

When such an implementation is given, the implementation feature

is restricted to apply only to primitives whose sort information involves

the primitive implemented, until all such primitives

have been implemented. This forces a package

of related primitives to be implemented as a bloc. This would require an implementation command,

a command to view the list of primitives to which implementation is currently restricted

(if there is one) and a mechanism for keeping track of dependencies of primitives,

under which the dependencies of a defined notion

would be the union of the sets of dependencies of the primitives

it mentions and the dependencies of a primitive notion would be the union of the

sets of dependencies of those primitives whose sort information

mentions the primitive (this is opposite what one might expect).

10/20 Parser refined so that the colon is always optional in the postulate command:

the parser knows that an argument list has ended when it encounters a reserved identifier.

10/9 another projected change: allow other methods of expressing abstraction arguments,

both application terms with missing arguments (interpreted as if curried) and

non-polymorphic abstractions (require that all types be deducible without explicit types

on input variables, as in the rewrite system. No code change yet.

10/2 projected possible changes, no modification in code yet.

A dependency system for type 0 postulates and definitions: the

idea would be to be able to implement constructed objects and

functions by giving definitions with the right types. Defined objects

depend on the primitive used in their declarations; constructed objects

seem to depend in a sense on other constructed objects which mention

them in their sorts: at least, it seems that an implement command

would require implementations of all such constructions to be given.

The other possibility I am considering is overloading.

User-entered lambda terms remain a desideratum if I can figure out

to do them neatly.

Testing of rewrited is needed.

9/27 major upgrades: changed display so that

implicit arguments of functions applied in sort displays

are not shown (unless the command showimplicit is run).

Fixed a bug in the implicit arguments mechanism, so that

yet more arguments can be deduced successfully.

8/20/2016 Attempt to debug possible problems with

interaction of implicit argument and rewriting features.

This needs testing: examples of rewritep and rewrited

commands with implicit arguments present are needed.

My belief is that rewritep was already set up to work correctly;

rewrited needed an argument list fix inserted,

which is now there but needs testing.

8/12/2016 Installed the version toggles as user commands. They do make sense.

The reindexing change is perilous: I need to be sure that all

situations where substitutions are made into abstraction types

are preceded by bound variable renaming.

--END dated notes *)

(*

*)

(*file and system message utility functions *)

fun fileexists s = OS.FileSys.access ((s^".lti"), []);

(* alternative version for processing LaTeX documents *)

7

fun fileexists2 s = OS.FileSys.access ((s^".tex"), []);

val READING = ref false;

(* controls the greeting message when you enter the interface *)

val GREETED=ref false;

(* the file to which all system activity is logged *)

val LOGFILE = ref (TextIO.openOut("default"));

(* close the log file *)

fun closelog() = (TextIO.flushOut(!LOGFILE);

TextIO.closeOut(!LOGFILE);LOGFILE:=TextIO.openOut("default"));

(* say = system messages. These go to standard output and also

as temporary comments (ignored and not persisting when logs are

executed) in the log. *)

fun Flush() = (TextIO.flushOut(TextIO.stdOut);TextIO.flushOut(!LOGFILE));

fun say s = (TextIO.output(TextIO.stdOut,"\nInspector Lestrade says: "^s^"\n\n");

Flush();TextIO.output(!LOGFILE,"\n>> Inspector Lestrade says: "^s^"\n\n");Flush());

fun saynoreturn s = (TextIO.output(TextIO.stdOut,"\nInspector Lestrade says: "^s);

Flush();TextIO.output(!LOGFILE,"\n>> Inspector Lestrade says: "^s^"\n\n");Flush());

(* saypause = system messages which are errors; these will terminate

scripts being run *)

val BREAKOUT = ref false;

fun saypause s = (saynoreturn (s^"\n>> Hit return to continue");if (!BREAKOUT) = false

then Inputline(TextIO.stdIn) else "";BREAKOUT:=true)

(* the current version. This is also the greeting the system gives

(and puts at the head of the log) when you enter the interface *)

(* USER COMMAND *)

fun versiondate() = say

("\n>> Welcome to the Lestrade Type Inspector,\n>> "^

"\n>> User entered lambda terms (arguments)"^

"\n>> and function sorts (in declare)!"^

8

"\n>> literate programming with LaTeX comments in ML source"^

"\n>> version of 8/16/2019\n>> 9:30 am Boise time\n");

(*

The first block consists of input/output utilities, in the most general sense
(file handling and system messages).

There are commands fileexists and fileexists2 which check for the
existence of files with extension .lti (Lestrade log or script files) and .tex

(Lestrade log or script files with LaTeX documentation).
The toggle READING controls the behavior of the readfile2 command (be-

low) which reads log files with LaTeX documentation, telling it when it is reading
Lestrade commands rather than echoing LaTeX text.

The toggle GREETED tells Lestrade whether the versiondate greeting has
been given (it is used to avoid unnecessary repetitions of the greeting).

The variable LOGFILE represents the log file to which Lestrade activity is
being recorded. The closelog command closes the log file.

The Flush command flushes the standard output and the log file.
The say command delivers system messages without pause, but with a re-

turn. System messages are logged but as nonpersisting comments.
The saynoreturn command delivers system messages without a following

return (they do still have following return in the log file: is this an issue?).
The value BREAKOUT is used to signal that one should break out of execution

of readfile or readfile2 (an error has been raised which causes Lestrade to
break out of execution of a file as a Lestrade script).

The saypause command, intended for error messages in particular, deliv-
ers system messages with a pause (the user must hit return). This command
terminates execution of any file being run as a Lestrade script.

The versiondate command gives version information. It is used as the
system greeting.

*)

(* Lestrade version toggles. These are now internal Lestrade commands. *)

val REWRITEVER = ref true;

val IMPLICITVER = ref true;

fun basic() = (REWRITEVER := false; IMPLICITVER:=false);

fun explicit() = (REWRITEVER:=true;IMPLICITVER:=false);

fun fullversion() = (REWRITEVER := true;IMPLICITVER:=true);

9

(*

These commands are version toggles, of which I make no particular use at
the moment. REWRITEVER is a toggle which is supposed to turn on the rewriting
features. IMPLICITVER is a toggle which is suppose to turn on the implicit
argument feature. One can see by examination which features are turned on in
the basic, explicit, and full versions. In practice, I run the full version.

*)

(* projections *)

fun pi13(x,y,z) = x;

fun pi23(x,y,z) = y;

fun pi33(x,y,z) = z;

(* find the sort associated with an identifier in a move or argument list *)

(* an item (n,t,u) in one of these lists has n the numerical

age of the item, t a term (usually a suitably packaged identifier, but there is

an exception) and u a sort. *)

fun find s nil = nil |

find s ((n,t,u)::L) = if s=t then [u] else find s L;

fun findandreplace s u nil = nil |

findandreplace s u ((n,t,v)::L)=

if s=t then ((n,t,u)::L)

else ((n,t,v)::(findandreplace s u L));

fun findandpurge s nil = nil |

findandpurge s ((n,t,u)::L) = if s=t then L

else ((n,t,u)::(findandpurge s L));

10

(* more general find function for, e.g., matching lists *)

fun abstractfind s nil = nil |

abstractfind s ((t,u)::L) = if s=t then [u] else abstractfind s L;

(* drop function for general lists *)

fun abstractdrop s nil = nil |

abstractdrop s ((t,u)::L) =

if s = t then abstractdrop s L

else (t,u)::(abstractdrop s L);

fun abstractdrop1 s nil = nil |

abstractdrop1 s ((t,u)::L) =

if s = t then L

else (t,u)::(abstractdrop1 s L);

fun Abstractfind s LP =

let val U = abstractfind s (!LP) in

if U = nil then nil

else (LP := (s,hd U)::(abstractdrop1 s (!LP));U)

end

fun listextends nil x = true |

listextends x nil = false |

listextends (a::L) (b::M) = (a=b) andalso listextends L M;

fun abstractdrop2 s nil = nil |

abstractdrop2 s ((t,u)::L) =

if listextends (rev s) (rev t) then abstractdrop2 s L

else (t,u)::(abstractdrop2 s L);

11

(* version which overwrites earlier matches *)

fun abstractmerge nil L = L |

abstractmerge ((s,t)::M) L =

(s,t)::(abstractmerge M (abstractdrop s L));

(* intersection of arguments in two sort dec lists -- no compatibility check *)

fun intersection nil L = nil |

intersection ((n,t,u)::L) M = if find t M <> nil then ((n,t,u)::(intersection L M))

else intersection L M;

fun union nil L = L |

union ((n,t,u)::L) M = if find t M = nil then ((n,t,u)::(union L M))

else union L M;

fun unionoflist nil = nil |

unionoflist (L::M) = union L (unionoflist M);

(* find the age of the declaration of a term in a move.

This is used to check the requirement that (explicit) parameters

appear in a function definition or declaration in the order in which they are declared.

The age of a defined object or function declaration is always zero. *)

fun age s nil = nil |

age s ((n,t,u)::L) = if s=t then [n] else age s L;

(* check a condition for all elements of a list *)

fun testall test nil = true |

testall test (s::L) = test s andalso testall test L;

fun inlist x nil = false |

inlist x (s::L) = if x=s then true else inlist x L;

fun allinlist nil L = true |

allinlist (s::M) L = inlist s L andalso allinlist M L;

12

(* drop items from a declaration list *)

fun drop s nil = nil |

drop s ((i,a,t)::L) = if s=a then drop s L else ((i,a,t)::(drop s L));

fun droplist L nil = nil |

droplist nil L = L |

droplist (s::M) L = drop s(droplist M L);

(*

The block above contains operations on tuples, lists, and sets.
Special support is given to Lestrade environments (used in the representation

of “moves” and also in the representation of function sorts and anonymous
function notations) which are lists of triples (n, t, u) where n is the age of the
tuple, t is a term (a variable whose declaration is being recorded, except possibly
in the last triple in the list), which we will call the key, and u is the sort
associated with the item t. We will refer to these structures as declaration lists.

The functions pi13, pi23, and pi33 are projection functions for triples.
The find function finds the sort associated with a key in a declaration list.

It actually returns a one-element list containing the sort if it finds one and nil
otherwise.

The functions findandreplace and findandpurge are used to find and ei-
ther replace or purge items in a declaration list: they are so far used only by
the deferred definition feature.

The abstractfind function is a more general find function for lists of pairs
in which the first item in each pair is the key (such as matching lists). We will
refer to such lists as abstract lists. The Abstractfind function does the same
thing, and moves searched items to the front of the list (so it acts on a reference
to the list rather than the list itself).

The abstractdrop function drops all items with a given key from an abstract
list.

The function abstractdrop2 is similar: it is used for lists in which the keys
are lists and keys extending a given key must be removed when the item at that
key is removed or changed. The lists of saved moves and rewrites associated
with moves have this characteristic.

The abstractmerge function merges two abstract lists. When it adds an-
other item with the same key, it overwrites rather than recognizing a conflict.

The intersection command returns all items in a first declaration list for
which there is an item with the same key in a second declaration list, without
a sort compatibility check.

13

The union command returns a list containing all items in a first list which
have keys not found in a second list, followed by all items in the second list,
without any sort compatibility checks.

The unionlist command takes unions in the same way as union but of a
list of lists.

The age function acts on declaration lists as find above, but returning the
age associated with a key rather than the sort.

The testall function reports whether a condition represented by a function
test (taking list items to booleans) holds of all items in a list.

*)

(* the internal representation of basic sorts (types) and objects *)

(* this type declaration seems to be marvellous,

as it seems to capture all sorts of things that we talk about, all the way from

mathematical objects to moves *)

datatype EntType (* basic sorts of objects *) =

obj (* mathematical objects *) |

prop (* propositions *) |

TYPE (* types of mathematical object *) |

that of Entity (* sort of proofs of a given proposition *) |

IN of Entity | (* the sort associated with a particular object of sort TYPE *)

error

and AbstType =

World of (int*Argument*Type) list (* this is the metasort of worlds (moves), and

also of

sorts assigned to functions *)

(* the integer is ‘‘age", for ensuring correct order in

argument lists. Age is 0 for defined notions *)

and Type (* general sorts of objects and functions *) =

14

(* it is worth noting here that the current partition of entities

into objects and functions corresponds to older terminology "entities"

and "abstractions", which is reflected in class and constructor names

in the source. I am correcting comments but not the code. *)

EType of EntType (* sort of an object (entity) *)|

AType of AbstType (* sort of a function (abstraction) *)

and Entity (* first order objects (entities):

typed and untyped objects, propositions, types, and proofs *) =

Unknown (* postulated, unknown--this is the ---

appearing in the sort in a function declaration *) |

Deferred (* this is the marker for a deferred definition *) |

Error |

Ent of string*int (* the numeral indicates namespace when nonzero,

used for renaming bound variables in dependent sorts and lambda terms *) |

App of string*int*(Argument list) (* the numeral again indicates namespace *)

and Argument (* first and second order entities,

objects and functions, as they appear in argument lists *) =

EntArg of Entity (* objects *) |

AbstArg of string*int (* functions *) | (* numeral is again namespace *)

Lambda of AbstType; (* lambda terms appearing in sorts *)

fun truncateto2 s nil = nil |

truncateto2 s ((n,t,u)::L) = if s=t then ((n,t,u)::L) else truncateto2 s L;

fun truncateto1 s L = rev(truncateto2 s (rev L));

fun truncateto s nil = nil |

truncateto s ((World L)::M) = if find s L = nil then truncateto s M else (World (truncateto1 s L))::M

(* the user never has to enter a lambda-term as a function argument [though she can now], only an identifier,

but the system generates lambda-terms when an identifier passes out of scope,

and also in the implicit arguments mechanism *)

15

(*

The block above is of central importance. It contains the master declara-
tion of structures handled by the Type Inspector, including representations of
objects, functions, sorts, argument lists, and moves.

The nomenclature reflects the old terminology “entities” for what are now
called “objects” and “abstractions” for what we later called “functions” and
now call “constructions”.

The ML type EntType contains representations of the basic object sorts.

1. obj represents the sort of untyped mathematical objects.

2. prop represents the sort of propositions.

3. TYPE represents the sort of type labels (Lestrade sort type).

4. that(x) when x is of type Entity represents the sort of proofs of the
proposition represented by x (Lestrade sort that x; the type checker of
Lestrade expects x to be of Lestrade sort prop, but ML does not enforce
this).

5. IN(x) when x is of type Entity represents the sort of typed mathematical
objects of Lestrade sort in x (the type checker of Lestrade expects x to
be of Lestrade sort type, but ML does not enforce this).

6. error represents an unsuccessful attempt to represent a sort (an error).

The ML type AbstType is related to the type of declaration lists mentioned
above: more detail is given here. An object of this type is the result of ap-
plying the constructor World to a list of triples in which each triple has the
first projection of type int, the second projection of type Argument, and the
third projection of type Type. “World” is old terminology for what we now call
“moves”, and this is the type of moves.

The ML type Type represents general Lestrade sorts. An element of type
Type is obtained by applying the constructor EType to an element of type
EntType (obtaining a Lestrade object sort) or applying the constructor AType to
an element of type AbstType (obtaining a Lestrade function/construction sort).

The ML type Entity contains representations of Lestrade objects.

1. Ent(s,n) where s is a string and n is an integer represents an atomic
object constant. The integer n signals namespace: if it is 0, this should
be a declared constant or variable object, while if it is nonzero this should
represent a namespace in which it is bound (a function sort term or an
anonymous function term has all its bound variables tagged with a unique
identifier).

16

2. App(s,n,L) where s is a string and n is an integer and L is a list of
arguments (of ML type Argument) represents application of a function
with the name s to the argument list L. The numeral n is namespace as
above: if it is 0 then s should be a currently declared function, while if it
is nonzero this indicates that s is bound in a function sort or anonymous
function notation, n identifying the correct namespace.

3. Unknown is a pseudo-object. EntArg Unknown appears as the key in the
final item in the list L appearing in a function sort AType(World L)

recorded as the sort of the output of the function, if the function is intro-
duced by the postulate command. This is one of the two exceptions to
the usual condition that key in an item in the list L in an element World

L is a suitably packaged identifier EntArg(Ent(s,n)) or AbstArg(s,n).
There are other internal uses of it as a sort of dummy object in ML function
definitions. If a function is introduced by the define command, the key of
the last element of the list L appearing in its recorded sort AType(World

L) is the body of the definition (the list is the same as would appear in
the representation of the function as a λ-term described below); its actual
sort is obtained by replacing the key with EntArg Unknown, an operation
carried out by functions we introduce shortly, but the extra declaration
information about the function is useful and this is a compact way to
report it.

Deferred is another pseudo-object, standing in for a deferred definition
body.

4. Error is an error object.

The ML type Argument is used to represent individual items in argument
lists.

1. EntArg(e), where e is of type Entity, yields e as an entity argument.

2. AbstArg(s,n), where s is a string and n is an integer, yields the function
named by s as an argument, with n serving to indicate namespace (if n is
0, s is currently declared, otherwise s is bound in a function sort term or
an anonymous function term).

3. Lambda(World L) represents an anonymous function term as an argument.
In this case the last term of the declaration list L will have the body of
the represented λ term as its key, this being the other exception to keys
in declaration lists being suitably packaged identifiers.

The function truncateto is a utility for the deferred definition mechanism
which may have further uses: it recreates the exact context after an identifier
was declared.

*)

17

(* utilities for manipulating the master ML types *)

fun isapp (App(m,s,t)) = true |

isapp x = false;

(* get function sort (or move) from a general sort *)

fun getabstype (AType x) = x|

getabstype x = (saypause "getabstype error";World nil);

(* identify entity arguments *)

fun isentarg (EntArg x) = true |

isentarg x = false;

(* utility identifies an object sort as opposed to a function sort *)

fun isenttype (EType x) = true |

isenttype (AType x) = false;

(* utility for adding an item to a move at the beginning *)

fun addworld2 x ((World M)) = (World (x::M));

(* utilities for taking apart an application term *)

fun appof (App(t,n,L)) = t |

appof x = "";

fun argsof (App(t,n,L)) = L |

argsof x = nil;

(* body of a lambda term -- I do wonder if this is a duplicate *)

fun lambdabody [(n,EntArg a,t)] = a |

lambdabody (x::L) = lambdabody L |

lambdabody x = Error;

fun lambdainputs nil = nil |

18

lambdainputs L = rev(tl(rev L));

(*

lambdabody pulls out the body of a lambda term Lambda(World L) from
the list L; it is the second component of the last triple in L.

lambdainputs applied to L gives the types of the inputs to the anonymous
function represented by Lambda (World L), by stripping off the last item which
handles the body of the term and the output type.

*)

(* get object sort from a general sort *)

fun getenttype (EType x) = x|

getenttype x = (saypause "getenttype error";error)

(* extract name from an atomic term *)

fun nameof (AbstArg(s,n)) = s |

nameof (EntArg(Ent(s,n))) = s |

nameof x = "";

(* convert a function sort to a declaration list *)

fun deworld2 (AType(World L)) = L |

deworld2 x = nil;

(* identifies an object argument which is not an atomic term *)

fun notvararg (EntArg(Ent(s,0))) = false |

notvararg (EntArg x) = true |

notvararg x = false;

(* utility adds an item to a move at the end *)

fun addtoworld0 (World L) x = World(L @ [x]);

19

fun deabst(AbstArg(s,0)) = s |

deabst x = "?!?!";

fun deworld (World L) = L;

(* a utility -- coerce an argument to an object. *)

fun deent (EntArg x) = x|

deent x = Error;

(*

Above find utilities for manipulating the master types in various ways. These
were scattered through the source originally: I gathered them in one place.

*)

(* clean definition information out of sorts *)

fun cleantypelist L = rev((pi13 (hd(rev L)),EntArg Unknown,

pi33(hd(rev L)))::(tl(rev L)));

fun Cleantype0(World L) =

World((* cleantypelist *) (map (fn (x1,x2,x3) => (x1,x2,Cleantype1 x3)) (cleantypelist L)))

and Cleantype1 (AType(World L)) = AType(Cleantype0(World L)) |

Cleantype1 x = x;

fun Cleantype2(World L) = World(map (fn(x1,x2,x3) => (x1,x2,Cleantype1 x3)) L);

fun Cleantype3(AType(World L)) = AType(Cleantype2(World L));

fun Cleantype4 (Lambda(World L)) = Lambda(Cleantype2(World L));

(*

The Cleantype functions systematically replace keys of final elements of lists
L in function sorts AType(World L) with EntArg Unknown, clearing information
about the bodies of definitions from the types given for defined functions.

cleantypelist carries out the actual replacement of the key on the last
triple in a list with EntArg Unknown.

20

Cleantype0 performs the action of cleantypelist on the list in an element
World L; it also cleans all types of items in the list with Cleantype1, which
executes the same action on the move component of a function sort AType(World
L) but leaves object sorts alone.

Cleantype2 applied to World L applies Cleantype1 to all types appearing
in L but does not strip definition body information from the last item in L.
Cleantype3 performs the action of Cleantype2 on the move component of an
element AType(World L). This is a cleanup function which can be applied to the
saved sort of a defined function without destroying the definition information.
Cleantype4 acts similarly on Lambda(World L).

*)

(* change all namespace indices to their additive inverses;

used for rewriting patterns *)

fun Negindex1 obj = obj |(* mathematical objects *)

Negindex1 prop = prop | (* propositions *)

Negindex1 TYPE = TYPE (* types *) |

Negindex1 (that E) = that (Negindex4 E)

(* sort of proofs of a proposition *) |

Negindex1 (IN E) = IN (Negindex4 E) |

Negindex1 error = error

and Negindex2 (World L) =

Cleantype2(World(map (fn (i,A,T) => (i,Negindex5 A, Negindex3 T)) L))

and Negindex3 (EType E) = EType (Negindex1 E) (* sort of an object *)|

Negindex3 (AType A) = Cleantype3(AType (Negindex2 A)) (* sort of a function *)

and Negindex4 Unknown = Unknown (* postulated, unknown--this is the ---

appearing in the sort in a function declaration *) |

Negindex4 Deferred = Deferred |

Negindex4 Error = Error |

Negindex4 (Ent(s,n)) = (Ent(s,~n)) (* the numeral indicates namespace,

used for renaming bound variables in dependent sorts and lambda terms *) |

21

Negindex4 (App(s,n,L)) = (App(s,~n, map Negindex5 L))

(* the numeral again indicates namespace *)

and Negindex5 (EntArg E) = EntArg(Negindex4 E) |

Negindex5 (AbstArg(s,n)) = AbstArg(s,~n)| (* numeral is again namespace *)

Negindex5 (Lambda A) = Cleantype4(Lambda (Negindex2 A));

(* lambda terms appearing in sorts *)

(*

Systematically replace namespace indices with their additive inverses. This
is a technical trick for rewriting patterns. (NOTE: comment later on how it is
used). I’m wondering if the applications of Cleantype are accidental (copied
from another function).

Adding facilities to help manage the global namespace index: Maxfreshindex
keeps track of the largest value that Freshindex has ever had.

*)

(* namespace reindexing utilities *)

(* find a number in a list of non negative integers: used in namespace

reindexing for display in showdec *)

(* These functions are now being applied to

sorts entered in declarations, not only to their displays. *)

fun Find n nil = ~1 |

Find n ((p,q)::L) = if n=p then q else Find n L;

val Freshindex = ref 0;

val Maxfreshindex = ref 0;

val Indexlist = ref [(~1,~1)];

val _ = Indexlist := nil;

fun Renumber n = if n=0 then 0 else let val N = Find n (!Indexlist) in

22

if N= ~1

then (Indexlist:=(n,!Freshindex)::(!Indexlist);Freshindex:=1+(!Freshindex);

if (!Freshindex)>(!Maxfreshindex) then Maxfreshindex := (!Freshindex) else ();

(!Freshindex)-1)

else N end

fun Reset() = (Freshindex := 1;Indexlist := nil);

(*

The block above has a very specific purpose: it renames bound variables
in Lestrade sort notations and anonymous function notations. Bound variables
have numerical tags which are unique to their binding context: this function
finds these tags and associates them with new successive numerical values. The
numerical tags occur more than once, so the renumbering feature has to keep a
table of correspondences between old numerical tags and new ones. The Reset

function reinitializes this feature, setting the counter for the next new numerical
tag to 0 and the list of renamings to nil. Only Renumber and Reset are called
outside this block.

*)

(* namespace reindexing function: this is a utility which avoids runaway indices

on new bound variables in declaration displays *)

(* This function is now applied

to the actual recorded sorts; in earlier versions it was only applied to displays *)

(* this required care that renaming of bound variables (the

function renamespace) be applied before *any* substitution into

a function sort or lambda term *)

(* these functions now also clean inappropriate definition information out of sorts;

apparently such information sneaks into arguments

somewhere in the implicit argument inference

mechanism *)

fun Reindex1 obj = obj |(* mathematical objects *)

Reindex1 prop = prop | (* propositions *)

Reindex1 TYPE = TYPE (* types *) |

23

Reindex1 (that E) = that (Reindex4 E) (* sort of proofs of a proposition *) |

Reindex1 (IN E) = IN (Reindex4 E) |

Reindex1 error = error

and Reindex2 (World L) =

Cleantype2(World(map (fn (i,A,T) => (i,Reindex5 A, Reindex3 T)) L))

and Reindex3 (EType E) = EType (Reindex1 E) (* sort of an object *)|

Reindex3 (AType A) = Cleantype3(AType (Reindex2 A)) (* sort of a function *)

and Reindex4 Unknown = Unknown (* postulated, unknown--this is the ---

appearing in the sort in a function declaration *) |

Reindex4 Deferred = Deferred |

Reindex4 Error = Error |

Reindex4 (Ent(s,n)) = (Ent(s,Renumber n))

(* the numeral indicates namespace,

used for renaming bound variables in dependent sorts and lambda terms *) |

Reindex4 (App(s,n,L)) = (App(s,Renumber n, map Reindex5 L))

(* the numeral again indicates namespace *)

and Reindex5 (EntArg E) = EntArg(Reindex4 E) |

Reindex5 (AbstArg(s,n)) = AbstArg(s,Renumber n)| (* numeral is again namespace *)

Reindex5 (Lambda A) = Cleantype4(Lambda (Reindex2 A));

(* lambda terms appearing in sorts *)

fun addtoworld (World L) x

= (Reset();World(L @ [(fn (i,A,T)=>(i,Reindex5 A,Reindex3 T)) x]));

(*

This is the function which actually does reindexing of sorts when they are
saved after declarations, using the functions in the previous block. It also purges
inappropriate information about definition bodies from types in some places; it
appeared that such information started leaking into saved types during the de-
velopment of the implicit arguments mechanism. The cleanup process here is

24

limited: declarations of defined functions still contain definition body informa-
tion, but it is purged from the types of variables.

The utility addtoworld for adding an item to a move at the end appears here
because it calls the reindexing functions. I note that it is actually never used
(should I replace subsequent occurrences of addtoworld0 with this function?)

*)

(* CONTEXT is the list of moves in use *)

val CONTEXT = ref [World nil, World nil];

val SAVECONTEXT0 = ref((!CONTEXT));

(* the list of rewrite rules declared or justified *)

val REWRITES = ref [[("bogus",(Unknown,Unknown))],[("bogus",(Unknown,Unknown))]];

val _ = REWRITES := [nil,nil];

(* the list of names attached to moves in the current sequence *)

val WORLDNAMES = ref ["1","0"];

(* the list of moves which have been saved *)

val SAVEDWORLDS = ref [(!WORLDNAMES,hd(!CONTEXT))];

val _ = SAVEDWORLDS:=nil;

(* saved rewrite rules, really a component of the previous

though implemented separately *)

val SAVEDREWRITES = ref [(!WORLDNAMES,hd(!REWRITES))];

val _ = SAVEDREWRITES:=nil;

(* serial number used for recording age of declarations *)

val SERIAL = ref 0

(* the index for generating fresh names in new namespaces,

for bound variable renaming in dependent sorts and lambda-terms *)

val NAMESERIAL = ref 0;

25

(* full theories, saved when files are loaded using readfile or readfile2 *)

val SAVEDTHEORIES = ref [("bogus",(!CONTEXT,!REWRITES,!SERIAL,!NAMESERIAL,!Maxfreshindex,!WORLDNAMES,!SAVEDWORLDS,!SAVEDREWRITES))];

(* fun ClearAll() = (clearallcaches();GREETED:=false;CONTEXT:=[World nil,World nil];

REWRITES:=[nil,nil];SERIAL:=0;NAMESERIAL:=0;Maxfreshindex:=0;WORLDNAMES:=["1","0"];SAVEDWORLDS:=nil;SAVEDREWRITES:=nil); *)

val _ = SAVEDTHEORIES := nil;

(*

Here we find references to structures in which declarations are saved.
CONTEXT points to the actual list of moves. The head of the list is the “next

move”; the second item in the list is the “last move”; the list is always of length
at least two.

REWRITES points to the list of lists of rewrite rules which is maintained in
parallel.

WORLDNAMES is the list of names of moves in the current sequence.
SAVEDWORLDS is the list of saved moves (more a tree structure than a list).

A saved move is specified not just by its name, but by the sequence of names
of moves leading to it. Different moves in the tree are allowed to have the same
string as a name; but different moves following the same previous move are not.
No move with a name other than its default numeral name will have a preceding
move other than move 0 which has its default numeral name; a move with its
default numeral name will preceded by a move with its default numeral name
(unless it is move 0).

SAVEDREWRITES is the list of saved rewrite rules saved in parallel with the
saved moves.

SAVEDTHEORIES is a list of saved theories: the move 0 declarations and some
indices are saved.

SAVECONTEXT0 is a reference used by the deferred definition feature to back
up the entire context.

*)

(* determine the number of the next move and attach

its name if it has a non-default name (not simply its numeral index) *)

fun worldname0 n nil = "bogus" |

worldname0 0 L = if hd L = makestring(length L-1) then "" else ":"^(hd L) |

worldname0 n L = worldname0 (n-1) (tl L);

26

fun worldname n = worldname0 n (!WORLDNAMES);

(* does a move (other than move 0) have a trivial name

(i.e., simply its numerical index) *)

fun defaultworld L = (length L >=2 andalso hd L = makestring((length L) -1));

(* recover lists of moves which can be opened using

open or clearcurrent commands *)

fun savedfor M nil = "" |

savedfor M ((s,t)::L) =

if tl s = M then (hd s)^"\n"^(savedfor M L)

else (savedfor M L);

(* USER COMMAND *)

fun savedforopen() = savedfor (!WORLDNAMES) (!SAVEDWORLDS);

(* USER COMMAND *)

fun savedforclearcurrent() = savedfor (tl(!WORLDNAMES)) (!SAVEDWORLDS);

(*

Utilities for management of saved worlds.
The function worldname is used to extract the name of a move (which is not

displayed if it has its default numerical value).
defaultworld identifies lists of moves in which the next move (at the head

of the list) has the default name.
The savedforopen and saveforclearcurrent commands are user com-

mands which display the names of the saved moves you can open with open

or clearcurrent.

*)

(* pretty printing *)

val EXTRAINDENTS = ref 0;

(* keep track of extra indentation needed in display of function sorts *)

27

(* break after the first comma, colon, or space after n characters *)

(* also, indent displays more deeply as one moves to deeper moves *)

(* also, indent more deeply at breaks inside function sorts or lambda terms

and always break after a closing bracket

(possibly picking up some following punctuation) *)

fun tolinebreak n nil = nil |

tolinebreak n (#"]":: #")":: #",":: L) =

(EXTRAINDENTS:=(!EXTRAINDENTS)-1;[#"]", #")", #","]) |

tolinebreak n (#"]":: #")":: #")":: L) =

(EXTRAINDENTS:=(!EXTRAINDENTS)-1;[#"]", #")", #")"]) |

tolinebreak n (#"]":: #")":: L) =

(EXTRAINDENTS:=(!EXTRAINDENTS)-1;[#"]", #")"]) |

tolinebreak n (#"\n":: #"\n":: L) = [#"\n", #"\n"]@(tolinebreak 0 L) |

tolinebreak 0 (c::L) = (

if c = #"[" then EXTRAINDENTS := 1+(!EXTRAINDENTS) else ();

if c = #"]" then EXTRAINDENTS := (!EXTRAINDENTS)-1 else ();

if c = #"," orelse c = #":" orelse c= #"]" orelse (c = #" "

andalso (L = nil orelse hd L <> #" ")) then [c] else c::(tolinebreak 0 L)) |

tolinebreak n (#" " :: #"\\" :: #"\n" :: L) = tolinebreak (n-3) L |

tolinebreak n (#"\\" :: #"\n" :: L) = tolinebreak (n-2) L |

tolinebreak n (#"\\"::L) = tolinebreak (n-1) L |

tolinebreak n (#" ":: #" ":: L) = #" ":: #" ":: tolinebreak (n-2) L |

tolinebreak n (x:: #" ":: #" ":: L) =

(

if x = #"[" then EXTRAINDENTS := 1+(!EXTRAINDENTS) else ();

if x = #"]" then EXTRAINDENTS := (!EXTRAINDENTS)-1 else ();

tolinebreak n (x:: #" " :: L)) |

(* tolinebreak n (x :: #" "::nil) = [x] | *)

28

tolinebreak n (#"\n" :: #" " :: L) = tolinebreak n (#"\n" :: L) |

tolinebreak n (#"\n" :: L) = tolinebreak n (#" "::L) |

(* tolinebreak n (#"\n"::nil) = #"\n"::nil | *)

tolinebreak n (c::L) = (

if c = #"[" then EXTRAINDENTS := 1+(!EXTRAINDENTS) else ();

if c = #"]" then EXTRAINDENTS := (!EXTRAINDENTS)-1 else ();

if c= #"]" then [#"]"] else

c::(tolinebreak (n-1) L));

fun restlinebreak n nil = nil |

restlinebreak n (#"]":: #")":: #",":: L) = L |

restlinebreak n (#"]":: #")":: #")":: L) = L |

restlinebreak n (#"]":: #")":: L) = L |

restlinebreak n (#"\n":: #"\n":: L) = restlinebreak 0 L |

restlinebreak 0 (c::L) = if c = #"," orelse c= #":" orelse c = #"]"

orelse (c = #" " andalso (L = nil orelse hd L <> #" ")) then L

else (restlinebreak 0 L) |

restlinebreak n (#" " :: #"\\" :: #"\n" :: L) = restlinebreak (n-3) L |

restlinebreak n (#"\\" :: #"\n" :: L) = restlinebreak (n-2) L |

restlinebreak n (#"\\"::L) = restlinebreak (n-1) L |

restlinebreak n (#" ":: #" ":: L) = restlinebreak (n-2) L |

restlinebreak n (x:: #" ":: #" ":: L) = restlinebreak n (x:: #" " :: L) |

restlinebreak n (#"\n" :: #" " :: L) = restlinebreak n (#"\n" :: L) |

(* restlinebreak n (x:: #"\n"::nil) = nil | *)

(* restlinebreak n (#"\n"::nil) = nil | *)

restlinebreak n (#"\n" :: L) = restlinebreak n (#" " :: L) |

29

restlinebreak n (c::L) = if c = #"]" then L else (restlinebreak (n-1) L);

(*

These functions determine the initial segment of a string being read to the
next line break (the numerical parameter is an estimate of how far it should be to
the next line break) and the rest of the string after the next line break and keep
track of how much indentation is expected after the line break (indentation
is determined by the length of CONTEXT (the move depth) and the depth of
variable binding (the number of function sort terms and anonymous function
terms (λ-terms) in which the position of the line break lies).

*)

val MARGIN = ref 40;

val MARGINTEMP = ref (!MARGIN);

(* USER COMMAND -- modified in the interface *)

fun setmargin n = MARGIN:= n;

fun setmargintemp n = MARGINTEMP:=n;

val spaceblock = " ";

fun indents n = if n<= 0 then "" else (indents (n-1))^spaceblock;

val INDENTWIDTH = ref 3

fun INDENTS() = let val I = indents (((length(!CONTEXT)-2))+(!EXTRAINDENTS)) in

if length(explode I)+(!INDENTWIDTH) > (!MARGINTEMP) then (setmargintemp(length(explode I)+2*(!INDENTWIDTH));I) else if length(explode I)+(!INDENTWIDTH) <= (!MARGIN) then (setmargintemp(!MARGIN);I) else I end;

fun despace0 (#" "::L) = despace0 (L) |

despace0 (#"\\"::L) = despace0 L |

(* despace0 (#"\n" :: #"\n" ::L) = despace0 (#"\n" :: L) |

despace0 (#"\n"::L) = despace0 L | *)

despace0 L = L

30

fun despace1 (""::L) = despace1 L |

despace1 L = L

and despace s = implode(rev(despace0(rev(despace0(explode s)))));

fun initial s = (INDENTS())^(despace(implode(tolinebreak(!MARGINTEMP)(explode (s)))));

fun final s = implode(restlinebreak(!MARGINTEMP)(explode (s)));

fun prettyprint s = let val I = INDENTS() in

(initial ((I)^(despace s)))^(if final (I^(despace s)) = "" then ""

else "\n "^(I)^(prettyprint(final ((I)^(despace s))))) end;

(* this produces the same output as prettyprint with each output

formatted for the log file as a temporary comment *)

fun prettyprint2 s = let val I = INDENTS() in (initial

((I^(despace s))))^(if final ((I)^(despace s)) = "" then "" else

"\n>> "^(prettyprint2(final ((I^(despace s)))))) end;

fun prettyprint3 s = if hd (explode s) = #"\n" then

prettyprint2 s else

"\n>> "^(prettyprint2 s);

fun prettyprint2a s = let val I = INDENTS() in (initial

((I^(despace s))))^(if final ((I)^(despace s)) = "" then "" else

if despace (final ((I^(despace s)))) = "" then "" else

" \\\n "^(prettyprint2a(final ((I^(despace s)))))) end;

fun prettyprint2b s = let val I = INDENTS() in I^(despace (prettyprint2a s)) end;

fun prettyprint3a s = if hd (explode s) = #"\n" then

prettyprint2b s else

"\n"^(prettyprint2b s);

(*

This block of code completes the pretty printing functions.
MARGIN is the margin, which the user can set using the setmargin command.

The margin sometimes has to be temporarily adjusted, which is the use of
MARGINTEMP.

The INDENTS() function returns the indent needed after a line break based
on the current move depth and variable binding term depth. indents is an
obvious internal part of that command.

31

The despace functions strip initial spaces (and null strings) from lists of
characters.

initial produces the intial segment of a line to the first line break; final
produces the rest of it.

prettyprint produces pretty printed text; prettyprint2 and prettyprint3

cooperate to produce pretty printed text packaged as temporary comments in
log files. Lettered versions are designed to make it possible to pretty-print com-
mand lines.

*)

(* post a pretty printed piece of Lestrade notation to standard output *)

fun say0 s=

(EXTRAINDENTS:=0;

TextIO.output(TextIO.stdOut,

(prettyprint s)^"\n");Flush());

(* post a pretty printed piece of Lestrade notation to standard output and the log file *)

fun say1 s= (say0 s;EXTRAINDENTS:=0;

TextIO.output(!LOGFILE,

(prettyprint3 s)^"\n");Flush());

fun say2 s= (say0 s;EXTRAINDENTS:=0;

TextIO.output(!LOGFILE,

(prettyprint3a s)^"\n");Flush());

(*

say0 posts a pretty printed piece of Lestrade notation to standard output,
using prettyprint; say1 posts pretty-printed notation to standard output and
also to the log file, using prettyprint3. say2 is intended to support line breaks
and indentation in echoed command lines.

*)

(* find the Argument reference of the string s in

the list of moves L (this returns the sort of the

object or function named by s if there is one, which does

contain enough information to tell whether the object

is declared and whether it is an object or a function *)

32

fun Find s (World L) = find s L;

(* similarly this returns the age of any declaration in any move of s --

the main use of this is to identify defined functions, which have age 0 *)

fun Age s (World L) = age s L;

(* stringdef returns the singleton list of

the sort of an identifier using a given move list argument,

paired with the numerical index of the move it is found in,

or nil for error *)

fun pi1(x,y)=x;

fun pi2(x,y)=y;

fun stringdef s nil = nil |

stringdef s L =

let val A = Find (EntArg(Ent (s,0))) (hd L) in

if A <> nil then

if stringdef s (tl L) <> nil then (saypause ("Name collision error: "^s);nil) else

[(hd A,0)] else

let val B = Find (AbstArg (s,0)) (hd L) in

if B <> nil then

if stringdef s (tl L) <> nil then (saypause ("Name collision error: "^s);nil) else

[(hd B,0)] else

let val C = stringdef s (tl L) in

if C = nil then nil else [(pi1(hd C),pi2(hd C)+1)] end

end

end;

(* this returns the singleton list of the sort of an identifier in the Lestrade context,

33

paired with the numerical index of the move it is found in,

or nil for error *)

fun stringtype s = stringdef s (!CONTEXT);

(*

These are functions which determine the semantics of strings in Lestrade
contexts. Find (a second use of this function name, which cannot conflict with
the use in the internals of the renumbering mechanism) acts as find on the
output of a World constructor. Similarly, Age acts as age on the output of a
World constructor; these allow finding the sorts and ages associated with keys
in moves.

pi1 and pi2 are just projections of pairs.
The function stringdef applied to a context list returns the sort associated

with the string in that context paired with the numerical index of the move in
which it occurs relative to the next move (not the absolute index relative to
move 0; the relative index of the next move is 0, of the last move is 1 and so
forth). Errors are reported if the same string appears as a key in more than one
move in the context list. The function stringtype returns the same information
about a string in the CONTEXT context list.

*)

(* build function to extract explicit argument list *)

val DISPLAYIMPLICIT = ref false

(* USER COMMAND *)

fun showimplicit() = DISPLAYIMPLICIT := true

(* USER COMMAND *)

fun hideimplicit() = DISPLAYIMPLICIT := false

fun purgeimplicit (World L) nil = nil |

purgeimplicit (World ((n,EntArg(Ent(s,m)),t)::L)) (u::M) =

if s<> "" andalso hd(explode s) = #"." then purgeimplicit (World L) M

else (u::(purgeimplicit (World L) M)) |

purgeimplicit (World ((n,AbstArg(s,m),t)::L)) (u::M) =

34

if s<> "" andalso hd(explode s) = #"." then purgeimplicit (World L) M

else (u::(purgeimplicit (World L) M)) |

purgeimplicit (World(x::L)) (u::M) = u::(purgeimplicit (World L) M);

fun explicitlist s n L = if (!DISPLAYIMPLICIT)

orelse n<>0 orelse stringtype s = nil then L

else purgeimplicit (getabstype((pi1(hd(stringtype s))))) L;

(*

These are functions which must be rather mysterious at this point related
to the display or non-display of implicit arguments. Arguments with an initial
dot in sorts of declared functions are implicit and should not be displayed;
the purgeimplicit function is used to eliminate arguments which should not
be displayed in the display functions, by correlating the argument list of an
instance of the function with the argument list in the declaration.

The user command showimplicit forces display of implicit arguments; hideimplicit
restores the normal behavior.

explicitlist actually generates explicit argument lists.

*)

(* display functions of Lestrade *)

val TYPESONLY = ref false;

fun typesonly() = TYPESONLY:=true;

fun showdefs() = TYPESONLY:=false;

(*

The typesonly command turns off display of definition bodies (useful for
reducing size of displays when definition expansion gets out of hand); showdefs
reverses this effect.

*)

(* display1 displays object sorts *)

fun display1 obj = "obj" |

display1 prop = "prop" |

35

display1 TYPE = "type" |

display1 (that P) = "that "^(display2 P) |

display1 (IN P) = "in "^(display2 P) |

display1 error = "error"

(* display2 displays object terms. Note that ---

is reserved for the pseudo-object Unknown used

as output for primitive functions, and ??? for Error. *)

and display2 (Ent(s,n)) = if n=0 then s else s^"_"^(makestring n)|

display2(App(s,n,nil)) = display2(Ent(s,n)) |

display2 (App(s,n,LL)) =

let val L = explicitlist s n LL in

if length L = 2 andalso isentarg (hd L) then

"("^(display4 (hd L))^" "^s^(if n=0 then ""

else "_"^(makestring n))^" "^(display4(hd(tl L)))^")"

else s^(if n=0 then "" else "_"^(makestring n))^"("^(display3 L) end |

display2 Unknown = "---" |

display2 Deferred = "+++" |

display2 Error = "???"

(* display3 displays argument lists *)

and display3 [a] = (display4 a)^")" |

display3 (a::L) = (display4 a)^","^(display3 L) |

display3 nil = "*?*?)"

and display4 (EntArg x) = display2 x |

display4 (AbstArg(s,n)) = display2(Ent(s,n)) |

display4 (Lambda x) = "["^(display5a x)

36

(* display5 displays dependent sorts and anonymous function terms (lambda terms).

This is the part of the output language about which the parser knows nothing. display5a, used in lambda terms

differs in that the definition body cannot be suppressed in the display. *)

and display5 (World [(n,a,t)]) = "("^(if (!TYPESONLY) andalso a <> EntArg Unknown then " ... " else (display4 a))^":"^(display6 t)^")]" |

display5 (World((n,a,t)::L)) = "("^(display4 a)^":"^(display6 t)^

(if length L = 1 then ") => " else "),")^(display5 (World L)) |

display5 (World nil) = "(?*?*?*?)"

and display5a (World [(n,a,t)]) = "("^((display4 a))^":"^(display6 t)^")]" |

display5a (World((n,a,t)::L)) = "("^(display4 a)^":"^(display6 t)^

(if length L = 1 then ") => " else "),")^(display5a (World L)) |

display5a (World nil) = "(?*?*?*?)"

(* display6 displays general sorts *)

and display6 (EType x) = display1 x |

display6 (AType(World x)) = "["^(display5 (World x));

(* display a move. This is the same type displayed

by display5, with different intent *)

fun displayworld (World nil) = "" |

displayworld (World((n,a,t)::L)) = (displayworld (World L))

^(INDENTS())^(display4 a)^":"^(display6 t)^"\n\n";

(*

These are the display functions that go with the master type declaration.
The functions other than displayworld are engaged in display of terms of
various kinds; displayworld displays a move (as a list of declarations). It is
interesting to note that display5 displays exactly the same ML type but in the
different role of the internal part of a function sort or a λ-term.

*)

(* display the indexed list of moves.

displacement corrects move indices in the showrecent command below *)

37

fun displayworlds displacement nil = "\n\n" |

displayworlds displacement L = "\n\nMove "^(makestring(displacement+(length L)-1))

^(worldname (length (!WORLDNAMES)-(displacement+(length L))))

^":\n\n"^(displayworld (hd L))^(displayworlds displacement (tl L));

(* display a rewrite list *)

fun displayarewritelist nil = "\n\n" |

displayarewritelist ((s,(t,u))::L) = (s^": "

^(display2 t)^" := "^(display2 u)^"\n")^(displayarewritelist L);

fun displayrewrites0 nil = "\n\n" |

displayrewrites0 (L::M) = (displayarewritelist L)^(displayrewrites0 M);

(* USER COMMAND *)

fun displayrewrites() = say (displayrewrites0 (tl(!REWRITES)));

(* display all moves -- this shows all declarations in detail *)

(* USER COMMAND *)

fun showall () = say0 (displayworlds 0 (!CONTEXT));

(* display the next move

and the last move (confusingly also called current move)

-- these are the moves in which you can actually make declarations,

and the showall display is likely to be huge.

So is the showrecent display if move 0 is displayed! *)

(* USER COMMAND *)

fun showrecent() = say0

(displayworlds (length(!CONTEXT)-2) [hd(!CONTEXT),hd(tl(!CONTEXT))]);

(*

These are commands devoted to the display of declarations.
displayworlds is the general function for display of a context list (a list of

moves). Some hacking is needed (and consultation of worldname) to post the
correct names of moves. The user command showall shows all declarations;
the user command showrecent shows the last move and the next move. The

38

displayrewrites command shows the currently active rewrite rules.

*)

(* display the declaration information of an identifier on standard output. Send

this to the log as well. Bound variable indices are rationalized. *)

(* USER COMMAND *)

val COMPACTDISPLAY = ref true

fun compactdisplay() = COMPACTDISPLAY := not(!COMPACTDISPLAY);

val SUPERCOMPACTDISPLAY = ref false

fun supercompactdisplay() = SUPERCOMPACTDISPLAY := not(!SUPERCOMPACTDISPLAY);

fun showdec s = let val S = stringtype s in

if S = nil then saypause (s^" is not declared")

else if (!SUPERCOMPACTDISPLAY) then ()

else if (!COMPACTDISPLAY) andalso length(!CONTEXT)-1-(pi2 (hd S)) > 0

then (Reset(); say1(s^": "^(display6(Cleantype1(Reindex3(pi1 (hd S)))))^

" {move "^(makestring(length(!CONTEXT)-1-(pi2 (hd S))))

^(worldname(pi2(hd S)))^"}\n\n"))

else (Reset(); say1(s^": "^(display6(Reindex3(pi1 (hd S))))^

" {move "^(makestring(length(!CONTEXT)-1-(pi2 (hd S))))

^(worldname(pi2(hd S)))^"}\n\n"))end;

(* utility for converting a move to a list of sort declarations *)

fun deworld (World L) = L;

(* showdecs will display declarations one by one. Useful if move 0

is being displayed. It goes through the next move in order, then the

last move in reverse order *)

fun showdecs0 nil = () |

showdecs0 ((i,EntArg(Ent(s,0)),t)::L) =

39

(showdec s;saynoreturn "Hit return to continue or q to break out:";

Flush(); TextIO.output(TextIO.stdOut,"\n");

if TextIO.input(TextIO.stdIn)="q\n" then ()

else showdecs0 L)|

showdecs0 ((i,AbstArg(s,0),t)::L) =

(showdec s;saynoreturn "Hit return to continue or q to break out:";

Flush();TextIO.output(TextIO.stdOut,"\n");

if TextIO.input(TextIO.stdIn)="q\n" then ()

else showdecs0 L)|

showdecs0 L = ();

(* USER COMMAND *)

fun showdecs() = (say

"Hit return after each declaration or q to quit";

say "Next move declarations"; showdecs0(deworld(hd(!CONTEXT)));

say "Present move declarations:"; showdecs0(rev(deworld(hd(tl(!CONTEXT))))));

(*

Here we have commands which display declarations of individual identifiers.
It is worth noting here that the fact that stringtype returns relative index
rather than absolute index of a move has to be taken into account, and also the
fact that the argument of worldname is actually the relative index of the move.

showdecs is a command which displays all declarations in the next move and
in the last move, one by one (the user hits return for the next one or q to break
out). The order in which it displays them is opposite (this appears practical):
in the next move it displays the most recent declarations first and in the last
move the oldest first (or the reverse, I’ll have to check).

It isn’t clear to me that renumbering is needed any more in these commands,
as I believe declarations are renumbered before being saved.

*)

(* age of an identifier in a given context packaged in a singleton list

-- useful mainly for identifying defined functions *)

fun stringage s nil = nil |

stringage s L =

let val A = Age (EntArg(Ent (s,0))) (hd L) in

40

if A <> nil then

if stringage s (tl L) <> nil then

(saypause ("Name collision error :"^s); nil)

else

A else

let val B = Age (AbstArg (s,0)) (hd L) in

if B <> nil then

if stringage s (tl L) <> nil then

(saypause ("Name collision error :"^s); nil) else

B

else stringage s (tl L)

end

end;

(* as the previous command, in the Lestrade context *)

fun stringAge s = stringage s (!CONTEXT);

(*

These functions are analogous to stringdef and stringtype, except that
they return the age of an identifier. A principal application of this is that the
age of a defined identifier is 0. It is also required that arguments in an argument
list in a declaration command appear in order of age.

*)

(* declaration checking for all types (in the ML sense)

against a context given as an argument *)

fun (* check object sorts *) deccheck1 L obj = true

41

| deccheck1 L prop = true

| deccheck1 L TYPE = true

| deccheck1 L (that P) = deccheck2 L P

| deccheck1 L (IN P) = deccheck2 L P

| deccheck1 L error = false

and deccheck2 L Unknown = true |

deccheck2 L Deferred = true |

deccheck2 L Error = false |

(* check objects *) deccheck2 L

(Ent (s,n)) = n<>0 orelse let val S = stringdef s L in

(if S = nil

then saypause ("Did not find object "^s^" (deccheck2)")else ();

Flush();

S <> nil andalso isenttype(pi1(hd S))) end |

deccheck2 L (App(s,n,M)) =

(n<>0 orelse

let val S = stringdef s L in

(if S = nil

then saypause ("Did not find function "^s^" (deccheck 2)") else();

Flush();

S <> nil andalso not (isenttype(pi1(hd S)))) end)

andalso testall (deccheck3 L) M

and (* check arguments *)

deccheck3 L (EntArg s) = deccheck2 L s

| deccheck3 L (AbstArg (s,n))

= n<>0 orelse let val S = stringdef s L

in (if S = nil

then saypause ("Did not find function "^s^" (deccheck3)")else();

Flush();

42

S <> nil andalso not (isenttype(pi1(hd S)))) end

| deccheck3 L (Lambda T) = deccheck4 L T

and (* check moves *) deccheck4 L (World M) =

testall (fn (n,a,t) => deccheck3 L a andalso deccheck5 L t) M

and (* check general sorts *) deccheck5 L (EType x) = deccheck1 L x |

deccheck5 L (AType x) = deccheck4 L x;

(*

These functions handle basic declaration checking for all the master ML
types. The error object type and the Error object signal failure. The Unknown

pseudo-object is accepted. Failure to find a declaration for a string used as
a name (unless its namespace indicates that it is bound) signals failure. The
function checks whether the sort associated with an identifier is of the right
species (object or function) indicated by its context.

*)

(* get a new namespace serial number *)

fun newnameserial() = (NAMESERIAL:=1+(!NAMESERIAL);(!NAMESERIAL))

(*

This generates fresh numerical tags for bound variables. In any term, all vari-
ables bound with scope a particular function sort term or anonymous function
term have the same numerical tag, and no two terms have the same associated
tag. The renumbering commands will suppress the very large indices which will
eventually occur. Would it make sense to try to dial back this counter now and
then?

*)

(* s is a declared identifier new in the next move *)

43

fun isnew s = Find s (hd(!CONTEXT)) <> nil;

(* s is a variable, new and not defined *)

fun isvariable s = isnew s andalso hd(Age s (hd(!CONTEXT))) <> 0;

(*

isnew identifies strings declared at the next move (“new” things).
isvariable identifies strings declared at the next move which are not defined

(variables).

*)

(* conditions for all sorts to be deducible in a term,

used to test appropriate rewrite patterns *)

fun isdefvar x = isnew x andalso not (isvariable x);

(* not currently used *)

(* here I exclude new defined variables

from type rigid terms, which is appropriate for

patterns, but one might want

to expand defined terms

if one is using this for user-entered

lambda terms *)

(* new defined identifiers might be wanted because matching with lambda terms is now

supported: they would be expanded -- this has been done *)

fun typerigid0 weak (EntArg(Ent(s,0))) =

(weak (* andalso not (isdefvar (EntArg(Ent(s,0)))) *))

orelse not(isnew(EntArg(Ent(s,0)))) |

typerigid0 weak (EntArg(App(s,0,L))) =

(weak (* andalso not (isdefvar(AbstArg(s,0)) *)

andalso testall (typerigid0 false) L) orelse

(not(isnew(AbstArg(s,0))) andalso testall (typerigid0 true) L) |

typerigid0 weak (AbstArg(s,0)) = (weak

(* andalso not (isdefvar (AbstArg(s,0))) *))

orelse not(isnew(AbstArg(s,0))) |

44

typerigid0 weak x = false;

fun typerigid x = typerigid0 false (EntArg x);

(*

This function allows determination of terms whose type can be deduced
exactly from context, a characteristic needed for rewrite patterns. It is theoret-
ically interesting for other applications, perhaps, though type inference is not
often employed in Lestrade.

The theory of how this works might of interest some time.
10/11/2017 eliminated last use of isdefvar; I think from the comments that

this was already intended.

*)

(* (* rewrite tabulation lists *)

val FULLREWRITES= ref [(Unknown,Unknown)];

val _ = FULLREWRITES:=nil;

val HEADREWRITES= ref [(Unknown,Unknown)];

val _ = HEADREWRITES:=nil; *)

(* tabulation lists *)

val FULLREWRITES= ref [(Unknown,Unknown)];

val _ = FULLREWRITES:=nil;

val HEADREWRITES= ref [(Unknown,Unknown)];

val _ = HEADREWRITES:=nil;

val TYPEMATCHES = ref [((World nil,[EntArg Error]),error)];

val _ = TYPEMATCHES := nil;

val DEFMATCHES = ref [((World nil,[EntArg Error]),Error)];

val _ = DEFMATCHES := nil;

45

fun clearallcaches() = (FULLREWRITES:=nil;HEADREWRITES:=nil;TYPEMATCHES:=nil;DEFMATCHES:=nil);

(*

These lists should support more efficient execution behavior for rewrite rules.
Caching for type and definition information is now also implemented.

Below is the beginning of the massive complex of recursively defined func-
tions which handles substitution, matching, type computations, rewriting, equal-
ity, and doubtless other things. This is the central engine of Lestrade, not to be
touched unless absolutely necessary. The end of this block is specifically marked
below: there will be various comments internal to it.

*)

(* This is the central dependent sort checking engine, not to be touched except

as absolutely necessary. It appears to be quite stable *)

(* substitution and sort checking all in one package *)

(* this is a huge block of recursively declared functions *)

(* all substitutions are of an argument for another argument,

in whatever type (in the ML sense) *)

(* substitution into general sorts *)

fun typesubs a A (EType t) = EType(etypesubs a A t) |

typesubs a A (AType t) = AType(atypesubs a A (renamespace t))

(* substitutions into moves = function sorts *)

and atypesubs a A ((World nil)) = (World nil) |

atypesubs a A ((World((n,b,t)::M))) =

addworld2 (n,argsubs a A b,typesubs a A t)

(* argsubs on first component is used only for the defined value *)

(atypesubs a A ((World M)))

46

(* substitutions into object sorts *)

and etypesubs a A obj = obj |

etypesubs a A prop = prop |

etypesubs a A (that P) = that (entsubs a A P)|

etypesubs a A TYPE = TYPE |

etypesubs a A (IN P) = IN (entsubs a A P) |

etypesubs a A error = error

(* substitutions into object terms *)

(* notice that defined functions declared

in the next move are expanded using defmatchcomp.

Trivial substitutions are often made to enforce this expansion.

The reason for this is that these substitutions

are made for sorts to be recorded in the parent context,

so functions (and objects) defined in the next move must pass out of scope.

*)

(* the precise way that this works when the first argument

is not a variable could be tweaked. This option is only used

in the deduction of implicit arguments. A further refinement

which would further enhance the power of the implicit argument

feature is the ability to substitute for a lambda term *)

and entsubs (EntArg x) (EntArg A) (Ent(s,n)) =

if x = Ent(s,n) then A else Ent(s,n) |

entsubs (EntArg x) (EntArg A) (App(s,n,M)) =

(* the isapp x test here prevents everything from slowing to

a crawl. It might more accurately be "x is not a variable" *)

(* isapp is the precise test that is usable without serious

performance deficits -- presumably caused by lots of wheel spinning

in equalentities. *)

if isapp x andalso equalentities x (App(s,n,M)) then A else

47

if n=0 andalso Age (AbstArg(s,n)) (hd(!CONTEXT)) = [0]

then entsubs (EntArg x) (EntArg A)

(defmatchcomp true (getabstype(hd(Find (AbstArg(s,n)) (hd(!

CONTEXT)))))

(map(argsubs (EntArg x) (EntArg A)) M))

else App(s,n,map(argsubs (EntArg x) (EntArg A)) M) |

entsubs (AbstArg(s,n)) (AbstArg(S,N)) (App(t,m,M)) =

if m=0 andalso Age (AbstArg(t,m)) (hd(!CONTEXT)) = [0]

then (* entsubs (AbstArg(s,n)) (AbstArg(S,N)) *)

(defmatchcomp true (getabstype(hd(Find (AbstArg(t,m)) (hd(!

CONTEXT)))))

(map(argsubs (AbstArg(s,n)) (AbstArg(S,N))) M))

else if s=t andalso n=m

then (* entsubs (AbstArg(s,n)) (AbstArg(S,N)) *)

(App(S,N,map(argsubs (AbstArg(s,n)) (AbstArg(S,N))) M))

else App(t,m,map(argsubs (AbstArg(s,n)) (AbstArg(S,N))) M) |

(* frank beta substitution -- I do not know if this can

actually happen *) (* yes, it can, and it was scrambled *)

entsubs (AbstArg(s,n))(Lambda w) (App(t,m,M)) =

if m=0 andalso Age (AbstArg(t,m)) (hd(!CONTEXT)) = [0]

then entsubs (AbstArg(s,n)) (Lambda w)

(defmatchcomp true (getabstype(hd(Find (AbstArg(t,m)) (hd(!

CONTEXT)))))

(map(argsubs (AbstArg(s,n)) (Lambda w)) M))

else if s=t andalso n=m

then (* entsubs (AbstArg(s,n)) (Lambda w) *)

(defmatchcomp true w

(map(argsubs (AbstArg(s,n)) (Lambda w)) M))

else App(t,m,map(argsubs (AbstArg(s,n)) (Lambda w)) M)|

(* this is a new case which will be used by the multisubs

function in very fancy implicit argument inference -- it

48

will take exactly this form, a known function being

replaced by application of a bound variable *)

entsubs (Lambda w) (AbstArg(s,n)) (App(t,m,M)) =

let val T = App(t,m,M) in

let val BODY = lambdabody (deworld w) in

let val INPUTS = lambdainputs (deworld w) in

let val MATCH = ematch false BODY T in

if MATCH <> nil then listsubsmod entsubs (hd MATCH)

(App(s,n,map pi23 INPUTS))

else App(t,m,map (argsubs (Lambda w) (AbstArg(s,n))) M)

end end end end |

entsubs x y T = T

(* substitutions into arguments --

notice that function arguments declared in the next move

are replaced with lambda-terms.

Again, this is because the terms we produce with these substitution functions

need to make sense in the last move,

where identifiers declared in the next move are out of scope. *)

and argsubs a A (EntArg x) = EntArg (entsubs a A x) |

argsubs x y (AbstArg(t,m)) =

if m=0 andalso Age (AbstArg(t,m)) (hd(!CONTEXT)) = [0]

then argsubs x y

(Lambda(getabstype(hd(Find(AbstArg(t,m))(hd(!CONTEXT))))))

else if x=AbstArg(t,m) andalso x<>y

then argsubs x y y (*this weird seeming maneuver forced in case

y is expandable *)

else AbstArg(t,m) |

49

argsubs x y (Lambda T) =

if x=y then

Lambda (atypesubs x y T)

else Lambda (atypesubs x y (renamespace T))

(*

The first block in the central engine is made up of substitution functions. All
of these functions substitute an Argument for another Argument, in whatever
type.

typesubs implements substitutions into Type, calling atypesubs and etypesubs.
atypesubs substitutes into moves.
etypesubs substitutes into object sorts.
entsubs makes substitutions into object terms. There is considerable power

in the way entsubs is carried out. If the target to be replaced is a complex
term, Lestrade will check whether the term it is looking at matches it (using
equalentities) and so may carry out a non-obvious replacement. Definitional
expansion of defined notions defined in the next move will be carried out before
substitutions (as these need to be eliminated before being saved to the last
move). Trivial substitutions are often forced (as of Unknown for Unknown) to
trigger definitional expansions of this kind. Function argument with atomic
names may be replaced with lambda terms, which will cause beta reduction.
There is a fancy matching mode of entsubs in which matching may be used to
replace (expanded!) application of a target lambda term with application of a
bound function variable.

For most purposes, entsubs is replacing atomic items (objects and functions
with string names) with target items in more or less straightfoward ways. The
other cases are used for implicit argument inference.

argsubs carries out substitutions into arguments. Note that argsubs carries
out the replacement of named functions defined at the next move with anony-
mous function terms (λ terms) because their names would otherwise pass out
of scope if recorded at the last move.

*)

(* this is actually matching of sorts not strict equality:

the first sort may be vaguer in having Unknown in the definition field

at the end where the second is actually defined. *)

(* we need equalentities here, allowing definition expansion (and rewrites) to

establish equality *)

50

(* the exact argument if true causes us to check

for equal lambda-terms rather than equal dependent sorts,

so we pay attention to the first projection of the last item *)

and equaltypes exact (EType x) (EType y) = x<> error

andalso y<> error andalso (x=y orelse equalenttypes x y) |

equaltypes exact (AType(World [(n,a,t)])) (AType(World [(m,b,u)]))

= equaltypes false t u andalso (not exact orelse

equalentities (deent a) (deent b)) |

equaltypes exact (AType(World ((n,a,t)::L)))(AType(World((m,b,u)::M)))=

if not(equaltypes false t u) then false

else

if exact then

equaltypes true (typesubs a b (AType(World L)))

(AType(World M))

else equaltypes true (AType(Cleantype0(World ((n,a,t)::L))))(AType(Cleantype0(World((m,b,u)::M))))

|

equaltypes exact x y = false

(* equality of object sorts *)

and equalenttypes (that P) (that Q) = equalentities P Q |

equalenttypes (IN P) (IN Q) = equalentities P Q |

equalenttypes error x = false |

equalenttypes x error = false |

equalenttypes x y = x=y

(* equality of lambda terms *)

and equivlambdas (Lambda x) (Lambda y) =

if x=y then true else

(* there needs to be a way to handle matching with abstractions

with deferred definitions, but it is tricky *)

51

equaltypes true (AType x) (AType y) |

equivlambdas x y = x=y

(* equality of object terms. This function allows expansion of defined functions

declared anywhere in the context to justify equation of object terms *)

and equalentities (App(s,n,M)) (App(t,u,N))

= if App(s,n,M)=App(t,u,N) then true else

if s=t andalso n=u andalso equalentitieslist M N then true else

(* testing different order 10/12/2017 *)

let val T = expand3(App(s,n,M)) and U = expand3 (App(t,u,N))

and V = rewriteonce (App(s,n,M)) and W=rewriteonce (App(t,u,N)) in

if T=Deferred andalso U = Deferred then false else

if

if V <> App(s,n,M) then equalentities V (App(t,u,N))

(* changed order of arguments here 10/12/17 *)

else if W <> App(t,u,N) then equalentities W (App(s,n,M)) else false

then true

else

if T <> Deferred andalso T <> App(s,n,M)

then equalentities T (App(t,u,N))

else if U <> Deferred andalso U <> App(t,u,N)

then equalentities U (App(s,n,M))

else

if T = Deferred

andalso u = 0 andalso n=0 andalso

equalenttypes (entitytype(App(s,n,M)))

(entitytype(App(t,u,M)))

then (Define0 s M (App(t,u,N));not(!BREAKOUT))

else if U = Deferred

52

andalso n=0 andalso u = 0 andalso

equalenttypes (entitytype(App(s,n,M)))

(entitytype(App(t,u,M)))

then (Define0 t N (App(s,n,M));not(!BREAKOUT))

else false

(* else s=t andalso n=u andalso equalentitieslist M N *)

end

|

equalentities (App(s,n,M)) x =

if App(s,n,M) = x then true else

let val T = expand3(App(s,n,M)) and V = rewriteonce (App(s,n,M)) in

if V <> App(s,n,M) andalso equalentities V x

then true

else if T <> Deferred andalso T <> App(s,n,M) andalso equalentities T x

then true else

if T = Deferred andalso n=0

andalso equalenttypes(entitytype(App(s,n,M)))(entitytype x)

then (Define0 s M x;not(!BREAKOUT)) else

false end

| equalentities x (App(s,n,M)) =

equalentities (App(s,n,M)) x (* modified order of execution 10/12/2017 *)

(* if x=App(s,n,M) then true else

let val T = expand(App(s,n,M)) and V = rewriteonce (App(s,n,M)) in

if V <> App(s,n,M)

then equalentities x V

else if T <> App(s,n,M)

53

then equalentities x T

else false end *)

|

equalentities x y = x=y

(* equality of argument lists [name is deceptive] *)

and equalentitieslist nil nil = true |

equalentitieslist ((EntArg a)::L) ((EntArg b)::M) = equalentities a b andalso

equalentitieslist L M |

equalentitieslist (a::L) (b::M) = (a=b orelse (equivlambdas (expand2 a) (expand2 b)))

andalso equalentitieslist L M |

equalentitieslist x y = false

(*

Here we have equality functions which try to determine whether objects of
various ML types are the same.

equaltypes determines whether function sorts are equal. In some cases it
is actually determining whether anonymous function terms (λ-terms) are equal,
in which case it pays attention to the second component of the last triple (if
the exact parameter is true). When it is checking equality of function sorts
(exact is false) it ignores the second component of the last triple. Note that
equaltypes handles α-conversion (renaming of bound variables) tidily.

equalenttypes handles equality of object sorts.
equivlambdas implements equality of lamba terms by invoking equality of

function sorts in its exact form.
equalentities handles equality of object terms. It will attempt rewriting,

then definitional expansion, to get equality if it does not see literal equality.
Notice that it rewrites in single steps of rewriting, then single steps of definitional
expansion, when attempting to establish equality. It will now backtrack from a
rewrite step to attempt a definitional expansion step.

corrected a case in equalentities where rewriting was left out, 10/11/2017.
Major modifications of execution order in equalentities 10/12/2017. It now
backtracks to expand definitionally if a rewrite leads it astray. Two changes:
it checks for matching of arguments if top operators match before attempting
rewriting or definitional expansion (this appeared to make it much faster) and
it switches the order of arguments when it does do definitional expansion or

54

rewriting, so that it will attempt to work on both sides of an equation. The
latter move might not be helpful, but is readily fixed.

I am considering whether it is dangerous to allow it to attempt definitional
expansion if rewriting takes it astray. Would this lead to too much backtracking?
I have installed this 10/12: if the approach using rewriting fails, it will return
and attempt definitional expansion.

equalentities is currently the one context in which deferred definitions can
be automatically updated to full definitions. It should eventually be possible
for equivlambdas to trigger redefinition.

equalentitieslist is equivalence of argument lists (which incorporates the
entire problem of equality of arguments). It is worth noting that it will success-
fully match function constants to lambda terms to which they are definitionally
equivalent, using expand2.

*)

(* work on sort computation *)

(* compute object sorts *)

and entitytype (Ent(s,0)) = let val S = stringdef s (!CONTEXT)

in if S=nil orelse not(isenttype(pi1(hd S))) then

(saypause ("Did not find object "^s^" (entitytype)");Flush();

error)

else getenttype(pi1(hd S)) end |

entitytype (App (s,0,M)) = let val S = stringdef s (!CONTEXT)

in if S=nil orelse isenttype(pi1(hd S)) then

(saypause ("Did not find function "^s^" (entitytype)");Flush();error)

else typematchcomp (getabstype(pi1(hd S))) M end |

entitytype x = error

(* compute argument sorts. Notice the easy case for lambda terms *)

and argtype (EntArg x) = EType(entitytype x) |

argtype (AbstArg (x,n)) = let val S = stringtype x in

if S=nil orelse isenttype(pi1(hd S)) then

(saypause ("Did not find function "^x^" (argtype)");

EType error)

else pi1(hd S) end |

argtype (Lambda x) = Cleantype1(AType x)

55

(*

We begin the section on computing sorts of terms.
The function entitytype computes types of object terms; it is an easy

lookup for atomic terms and calls the main sort computation algorithm typematchcomp

for application terms.
The function argtype computes types of arguments. It probably should

invoke a Cleantype function in addition to doing the very simple thing it does
for λ-terms.

*)

(* the sort matching algorithm for dependent sorts; this

returns the correct sort given the full sort of the applied

function (inputs and output) and the list of sorts of the input,

or error if matches fail. *)

(*

and typematchcomp (World L) M = typematchcomp0 (deworld(renamespace(World L)))

(map (fn m=>(0,m,argtype m)) M)

and typematchcomp0 [(n,a,EType t)] nil

= etypesubs (EntArg Unknown) (EntArg Unknown) t |

typematchcomp0 ((n,a,t)::L) ((m,A,T)::M) =

if not(equaltypes false t T) then (saypause ("Sort "^(display6 t)^" of "^

(display4 a)^" does not match sort "^(display6 T)^" of "^(display4 A));Flush();error)

else typematchcomp0

(map (fn(u,v,w) => (u,argsubs a A v,typesubs a A w)) L)

M |

typematchcomp0 x y = error

and typematchcomp1 [(n,a,t)] nil = typesubs (EntArg Unknown) (EntArg Unknown) t |

(* typematchcomp1 is used to make substitutions into initial

segments of types in FixListType below,

to handle curried notations for function arguments 10/10 mods *)

typematchcomp1 ((n,a,t)::L) ((m,A,T)::M) =

if not(equaltypes false t T) then (saypause ("Sort "^(display6 t)^" of "

^(display4 a)^" does not match sort "^(display6 T)^" of "^(display4 A));

56

Flush();EType error)

else typematchcomp1

(map (fn(u,v,w) => (u,argsubs a A v,typesubs a A w)) L)

M |

typematchcomp1 x y = EType error

(* sort matching with no error message reports -- used by

the implicit argument discovery feature *)

and silenttypematchcomp0 [(n,a,EType t)] nil

= etypesubs (EntArg Unknown) (EntArg Unknown) t |

silenttypematchcomp0 ((n,a,t)::L) ((m,A,T)::M) =

if not(equaltypes false t T) then

((* saypause ("Type "^(display6 t)^" of "^(display4 a)^

" does not match type "^(display6 T)^" of "^(display4 A));Flush(); *) error)

else silenttypematchcomp0

(map (fn(u,v,w) => (u,argsubs a A v,typesubs a A w)) L)

M |

silenttypematchcomp0 x y = error

(* this function computes values of defined functions.

It has a parameter which if set to false would do sort checking,

but in fact it is only used in safe context so far

(on things already known to have been sort checked). *)

and defmatchcomp safe (World L) M = defmatchcomp0 safe (deworld(renamespace(World L)))

(map (if safe then (fn m=>(0,m,EType error)) else (fn m=>(0,m,argtype m))) M)

and defmatchcomp0 safe [(n,EntArg a,EType t)] nil = a |

defmatchcomp0 safe ((n,a,t)::L) ((m,A,T)::M) =

if (not safe) andalso (not(equaltypes false t T)) then Error

else defmatchcomp0 safe

(map (fn(u,v,w) => (u,argsubs a A v,typesubs a A w)) L)

M |

defmatchcomp0 safe x y = Error

*)

and typematchcomp (World L) M =

57

let val FF = Abstractfind (World L,M) (TYPEMATCHES) in

if FF <> nil then hd FF

else let val M2 = (map (fn m=>(0,m,argtype m)) M) in

let val RESULT = typematchcomp0 (deworld(renamespace(World L)))

M2 in

(TYPEMATCHES:=((World L,M),RESULT)::(!TYPEMATCHES);RESULT)

end end end

and typematchcomp0 [(n,a,EType t)] nil

= etypesubs (EntArg Unknown) (EntArg Unknown) t |

typematchcomp0 ((n,a,t)::L) ((m,A,T)::M) =

if not(equaltypes false t T) then (saypause ("Sort "^(display6 t)^" of "^

(display4 a)^" does not match sort "^(display6 T)^" of "^(display4 A));Flush();error)

else typematchcomp0

(map (fn(u,v,w) => (u,argsubs a A v,typesubs a A w)) L)

M |

typematchcomp0 x y = error

and typematchcomp1 [(n,a,t)] nil = typesubs (EntArg Unknown) (EntArg Unknown) t |

(* typematchcomp1 is used to make substitutions into initial

segments of types in FixListType below,

to handle curried notations for function arguments 10/10 mods *)

typematchcomp1 ((n,a,t)::L) ((m,A,T)::M) =

if not(equaltypes false t T) then (saypause ("Sort "^(display6 t)^" of "

^(display4 a)^" does not match sort "^(display6 T)^" of "^(display4 A));

Flush();EType error)

else typematchcomp1

(map (fn(u,v,w) => (u,argsubs a A v,typesubs a A w)) L)

M |

typematchcomp1 x y = EType error

(* sort matching with no error message reports -- used by

the implicit argument discovery feature *)

(* and silenttypematchcomp0 (World L) M =

58

let val FF = abstractfind (World L,map (fn (a,b,c) => b) M) (!TYPEMATCHES) in

if FF <> nil then hd FF

else (* let val M2 = (map (fn m=>(0,m,argtype m)) M) in *)

let val RESULT = silenttypematchcomp1 (deworld(renamespace(World L)))

M in

(TYPEMATCHES:=((World L,map (fn (a,b,c) => b) M),RESULT)::(!TYPEMATCHES);RESULT)

end end (* end *)

and silenttypematchcomp1 [(n,a,EType t)] nil

= etypesubs (EntArg Unknown) (EntArg Unknown) t |

silenttypematchcomp1 ((n,a,t)::L) ((m,A,T)::M) =

if not(equaltypes false t T) then

((* saypause ("Type "^(display6 t)^" of "^(display4 a)^

" does not match type "^(display6 T)^" of "^(display4 A));Flush(); *) error)

else silenttypematchcomp1

(map (fn(u,v,w) => (u,argsubs a A v,typesubs a A w)) L)

M | *)

and silenttypematchcomp0 x y =

let val Y = map (fn (a,b,c) => b) y in

let val FF = Abstractfind (World x,Y) (TYPEMATCHES) in

if FF <> nil then hd FF

else (* let val M2 = (map (fn m=>(0,m,argtype m)) M) in *)

let val RESULT = silenttypematchcomp1 (deworld(renamespace(World x)))

y in

(TYPEMATCHES:=((World x,Y),RESULT)::(!TYPEMATCHES);RESULT)

end end end (* end *)

and silenttypematchcomp1 [(n,a,EType t)] nil

= etypesubs (EntArg Unknown) (EntArg Unknown) t |

59

silenttypematchcomp1 ((n,a,t)::L) ((m,A,T)::M) =

if not(equaltypes false t T) then

((* saypause ("Type "^(display6 t)^" of "^(display4 a)^

" does not match type "^(display6 T)^" of "^(display4 A));Flush(); *) error)

else silenttypematchcomp1

(map (fn(u,v,w) => (u,argsubs a A v,typesubs a A w)) L)

M |

silenttypematchcomp1 x y = error

(* this function computes values of defined functions.

It has a parameter which if set to false would do sort checking,

but in fact it is only used in safe context so far

(on things already known to have been sort checked). *)

and defmatchcomp safe (World L) M =

let val FF = Abstractfind (World L,M) (DEFMATCHES) in

if FF <> nil then hd FF else

let val RESULT=

defmatchcomp0 safe (deworld(renamespace(World L)))

(map (if safe then (fn m=>(0,m,EType error)) else (fn m=>(0,m,argtype m))) M)

in

(DEFMATCHES:=((World L,M),notdeferred RESULT)::(!DEFMATCHES);RESULT) end end

and defmatchcomp1 safe (World L) M =

let val FF = Abstractfind (World L,M) (DEFMATCHES) in

if FF <> nil then hd FF else

let val RESULT=

defmatchcomp0 safe (deworld(renamespace(World L)))

(map (if safe then (fn m=>(0,m,EType error)) else (fn m=>(0,m,argtype m))) M)

in

(DEFMATCHES:=((World L,M),RESULT)::(!DEFMATCHES);RESULT) end end

and defmatchcomp0 safe [(n,EntArg a,EType t)] nil = a |

defmatchcomp0 safe ((n,a,t)::L) ((m,A,T)::M) =

if (not safe) andalso (not(equaltypes false t T)) then Error

else defmatchcomp0 safe

(map (fn(u,v,w) => (u,argsubs a A v,typesubs a A w)) L)

M |

defmatchcomp0 safe x y = Error

60

(*

Here are various versions of the central iterated substitution process which
computes both sorts of application terms and definitional expansions of appli-
cation terms. Things to note are the essential role of clever equality functions
in matching and the use of trivial rewrites to force expansion of defined notions
declared at the next move. These functions have been updated with caching.

typematchcomp computes types of application terms. It has a silent version
which doesn’t raise error messages when errors are encountered, which is used
by the implicit argument inference feature.

defmatchcomp computes values of defined functions by basically the same
algorithm. This function does no internal sort checking, though it is set up
with a parameter which would force this, because it is never applied except in
situations where the components used have already been sort checked.

All of these functions take first argument World L which is the sort of the
function being applied (input and output) and the list M of sorts of the inputs
(which will be one shorter, except in the case of the function typematchcomp1

which computes types of “curried function arguments” which may have argu-
ments lists which are shorter.

*)

(* one step of expansion of a defined function in applied position *)

and notdeferred Deferred = (saypause "Cannot expand deferred definition";Error) |

notdeferred x = x

and expand (App(s,n,M)) =

if n=0 andalso stringAge s = [0] andalso stringtype s <> nil

then (entsubs (EntArg Unknown) (EntArg Unknown)

(defmatchcomp true(getabstype(pi1(hd(stringtype s)))) M))

else App(s,n,M) |

expand x = x

(* expansion of an argument to a lambda-term if it is defined *)

and expand2 (AbstArg(s,n)) =

if n=0 andalso stringAge(s) = [0] andalso stringtype s <> nil

61

then argsubs (EntArg Unknown) (EntArg Unknown)

(Lambda(getabstype(pi1(hd(stringtype s)))))

else AbstArg(s,n) |

expand2 x=x

and expand3 (App(s,n,M)) =

if n=0 andalso stringAge s = [0] andalso stringtype s <> nil

then entsubs (EntArg Unknown) (EntArg Unknown)

(defmatchcomp1 true(getabstype(pi1(hd(stringtype s)))) M)

else App(s,n,M) |

expand3 x = x

(*

Here are some expansion functions.
expand does one step of definitional expansion of an application term with

a defined top level operation. It leaves other terms alone.
expand2 will expand a defined function appearing as an argument by itself

to a λ-term.
expand3 is the only version which will not trigger error if the result is

Deferred. It is used in matching of object terms to notice when redefinition
should be forced.

*)

(* moving all bound variables in a dependent sort or lambda term

to a new namespace, before a substitution into one of these is made *)

and renamespace (World L) = World (renamespace0 (newnameserial())L)

and renamespace0 N [(n,a,t)] = [(n,a,t)] |

renamespace0 N ((m,(AbstArg(s,n)),t)::L)=

(m,(AbstArg(s,N)),t)::

(deworld(atypesubs (AbstArg(s,n)) (AbstArg(s,N)) (World (renamespace0 N L)))) |

renamespace0 N ((m,(EntArg(Ent(s,n))),t)::L)=

(m,(EntArg(Ent(s,N))),t)::

(deworld(atypesubs (EntArg(Ent(s,n))) (EntArg(Ent(s,N))) (World(renamespace0 N L)))) |

renamespace0 N x = (saypause "Bad case in renamespace";nil)

62

(*

This function applies a fresh numerical tag to all variables bound at the
top level in a function sort term or anonymous function term. This function is
applied before any substitution is made into such a term to avert bound variable
collision problems.

*)

(* matching function to be added at this point. Two object terms are matched.

A list of matches for variables is produced *)

(* it is demonstrable that if two sort safe expressions, the first of which

is not a variable, match successfully, then they will in fact be of the same sort *)

(* solving confluence issues by requiring that executable subterms in the body

be head-rewritten before matching: an executable can only match anything in a context

in which it has no execution behavior (except at the top of course) *)

and ematch b (Ent(s,n)) t =

if n<>0

then [[(EntArg(Ent(s,n)),EntArg t)]]

else if (Ent(s,n)) = t (* andalso (not b orelse headrewrite (Ent(s,n)) = Ent(s,n)) *)

(* rewrite patterns are never atomic *)

then [nil]

else nil |

ematch b (App(s,n,L)) (App(t,n2,M)) = (HEADREWRITES:=nil;

let val T = if b

then (*if *) headrewrite (App(t,n2,M)) (*=App(t,n2,M)

then App(t,n2,M) else Error *)

else App(t,n2,M) in

if s <> appof T then nil

else argmatch L (argsof T) end) |

63

ematch b x y = nil

and argmatch nil nil = [nil] |

argmatch x nil = nil |

argmatch nil x = nil |

argmatch ((EntArg x)::L) ((EntArg y)::M) =

mergematch (ematch true x y) (argmatch L M) |

argmatch (AbstArg(s,n)::L) (t::M) =

if n<>0 then

mergematch [[(AbstArg(s,n),t)]] (argmatch L M)

else if AbstArg(s,n) = t then argmatch L M else nil |

argmatch ((Lambda (World[(n,s,t)]))::LL) ((Lambda (World[(N,S,T)]))::MM)

= argmatch (s::LL) (S::MM) |

argmatch ((Lambda (World((n,s,t)::L)))::LL)

((Lambda (World((N,S,T)::M)))::MM) =

argmatch ((Lambda (World L))::LL)

((Lambda (atypesubs S s (World M)))::MM) |

argmatch x y = nil

and mergematch nil x = nil |

mergematch x nil = nil |

mergematch [nil] x = x |

mergematch x [nil] = x |

mergematch x y = let val M = mergematch0 (hd x) (hd y) in

if M = nil then nil else [M] end

and mergematch0 nil L = nil |

mergematch0 L nil = nil |

64

mergematch0 ((s,t)::L) M =

let val N = abstractfind s (L @ M) in

if N = nil then if L <> nil then (s,t)::(mergematch0 L M)

else (s,t)::M

else if equalarguments t (hd N) then

if abstractdrop s L = nil andalso abstractdrop s M = nil then [(s,t)]

else if abstractdrop s L <> nil

then (s,t)::(abstractdrop s (mergematch0 L M))

else (s,t)::(abstractdrop s M)

else nil end

and equalarguments (EntArg s) (EntArg t) = equalentities s t |

equalarguments (Lambda x) (Lambda y) = equivlambdas (Lambda x) (Lambda y) |

equalarguments x y = x = y

(* tools for implementing substitutions by pattern matching over

any of the various sorts for which we have substitution functions *)

and listsubsmod subsfun nil T = T |

listsubsmod subsfun ((s,t)::L) T = subsfun s t (listsubsmod subsfun L T)

and matchsubs subsfun pattern target body =

let val M = ematch false pattern body in if M = nil then body else

listsubsmod subsfun (hd M) target end

(*

Matching and matching-driven substitution, used by the rewriting feature
and also by implicit argument inference.

Matching functions output a list of substitutions of arguments with the de-
sired result.

ematch handles matching of object terms. To enforce confluence, it is re-
quired that no subterm of a pattern can match something which can itself be
head-rewritten: subterms of the target are head-rewritten before matching to
enforce this. An entire pattern can of course match something which can be

65

rewritten; the parameter b of ematch is false in this case. I believe that checks
of atomic terms for being rewriteable are unnecessary, as in fact atomic terms
cannot be rewrite patterns (or this is not possible at the moment).

The function argmatch handles matching of arguments. Notable is an at-
tempt to implement matching of λ-terms which needs to be tested.

mergematch handles merging of match lists in a standard way: note the use
of equalarguments to extend our ability to reconcile matches.

The function equalarguments looks like a stray from the equality section.
listsubsmod is a polymorphic tool for executing substitutions based on

match lists.
matchsubs implements substitutions driven by rewrite rules.

*)

(* apply first applicable rewrite rule, just once *)

and rewriteoncewithalist nil t = t |

rewriteoncewithalist ((s,(t,u))::L) T =

let val M = ematch false t T in

if M = nil then rewriteoncewithalist L T

else matchsubs entsubs t u T end

and rewriteoncewithalistlist nil T = T |

rewriteoncewithalistlist (L::M) T =

let val U =rewriteoncewithalist L T in

if U <> T then U

else rewriteoncewithalistlist M T end

and rewriteonce T = if (!REWRITEVER)

then rewriteoncewithalistlist (tl(!REWRITES)) T else T

(* complete rewriting *)

and fullrewrite (App(s,0,L)) =

let val FF = Abstractfind (App(s,0,L)) (FULLREWRITES) in

66

if FF <> nil then hd FF

else

let val L1 = map fullrewrite2 L in

let val T1 = rewriteonce (App(s,0,L1))

in if T1 = App(s,0,L1) then (FULLREWRITES:=(App(s,0,L),T1)::(!FULLREWRITES);T1)

else let val T2 = fullrewrite T1 in

(FULLREWRITES:=(App(s,0,L),T2)::(!FULLREWRITES);T2)

end

end end end |

(* fullrewrite (Ent(s,0)) =

let val FF = Abstractfind (Ent(s,0)) (FULLREWRITES) in

if FF <> nil then hd FF

else

let val T1 = rewriteonce (Ent(s,0)) in

if T1 = Ent(s,0) then (FULLREWRITES:=((Ent(s,0)),T1)::(!FULLREWRITES);T1)

else let val T2 = fullrewrite T1 in

(FULLREWRITES:=(Ent(s,0),T2)::(!FULLREWRITES);T2)

end

end end | *)

(* rewrite patterns are never atomic *)

fullrewrite x = x

and fullrewrite2 (EntArg x) = EntArg (fullrewrite x) |

fullrewrite2 x = x

(* head rewriting (just from the top) *)

67

and headrewrite (App(s,0,L)) =

let val FF = Abstractfind (App(s,0,L)) (HEADREWRITES) in

if FF <> nil then hd FF else

let val T1 = rewriteonce (App(s,0,L))

in if T1 = App(s,0,L) then (HEADREWRITES:= (App(s,0,L),T1)::(!HEADREWRITES);T1)

else let val T2 = headrewrite T1 in

(HEADREWRITES:= (App(s,0,L),T2)::(!HEADREWRITES);T2)

end

end end |

(* headrewrite (Ent(s,0)) =

let val FF = Abstractfind (Ent(s,0)) (HEADREWRITES) in

if FF <> nil then hd FF

else

let val T1 = rewriteonce (Ent(s,0)) in

if T1 = Ent(s,0) then (HEADREWRITES:=((Ent(s,0)),T1)::(!HEADREWRITES);T1)

else let val T2 = headrewrite T1 in

(HEADREWRITES:=(Ent(s,0),T2)::(!HEADREWRITES);T2)

end

end end | *)

(* rewrite patterns are never atomic *)

headrewrite x = x

and isordered nil = true |

68

isordered [a] = true |

isordered (a::(b::L)) =

hd(Age a (hd(!CONTEXT))) <> 0 andalso

(hd(Age a (hd(!CONTEXT))) < hd(Age(b)(hd(!CONTEXT)))

andalso isordered (b::L))

(*

Checks the property of the argument list of identifiers in a declaration com-
mand that they must appear in order of nonzero age (and they must appear in
the next move). (zero age signals that an identifier is defined, and so cannot be
a parameter).

This now appears here because a version of the define user command ap-
pears in the internals of the logic engine for deferred definitions.

*)

and worlditem0 s = (hd(Age s (hd(!CONTEXT))),s,

typesubs (EntArg Unknown) (EntArg Unknown)

(hd(Find s (hd(!CONTEXT)))))

and worldof0 L = World((* guardedexpandlist *) (map worlditem0 L))

and Define0 s L T = (FULLREWRITES:=nil;

if hd(!REWRITES) <> nil then saypause "Define command blocked by hypothetical rewrites" else

if not(testall isvariable L) then saypause "Some argument is not variable"

(* same remark on the argument order test as above *)

else if not (isordered L) then saypause "Arguments are in the wrong order"

else

let val T0 = T in

(* if reserved s orelse extended s orelse stringtype s <> nil

then saypause ("Identifier "^s^" is not fresh")

else *) if not let val T2 = ((entsubs (EntArg Unknown) (EntArg Unknown) T))

69

and THETYPE = (* dotfix (deworld(worldof L)) *)

(etypesubs (EntArg Unknown) (EntArg Unknown) (entitytype T0)) in (

SAVECONTEXT0:=(!CONTEXT);

CONTEXT:= (worldof0 (* worldof2 *) L)::(map(fn (World LL) =>World(findandpurge(AbstArg(s,0)) LL))(truncateto (AbstArg(s,0))(tl(!CONTEXT))));

let val CHECK = deccheck4 (!CONTEXT) (hd(!CONTEXT)) andalso

deccheck1 (!CONTEXT) THETYPE andalso deccheck2 (!CONTEXT) T2

in (CONTEXT:=(!SAVECONTEXT0);CHECK)

end

) end then saypause "Sort check or dependency failure"

else let val TT = fullrewrite(entsubs (EntArg Unknown) (EntArg Unknown) (T))

and THETYPE = (* dotfix(deworld(worldof L)) *)

(etypesubs (EntArg Unknown) (EntArg Unknown) (entitytype (T0))) in (

let val TTTT = (Reset();Reindex3(

AType(renamespace(addtoworld0 (worldof0 L) (0,EntArg TT,EType (THETYPE)))))) in

(CONTEXT:= map (fn World LL => World(findandreplace (AbstArg(s,0)) TTTT LL)) (!CONTEXT);showdec s)

end)

end end);

(*

These are the rewriting functions.
rewriteoncewithalist implements rewriting, just once, using the first ap-

plicable rewrite rule appearing in a list given as an argument.
rewriteoncewithalistlist does that same thing with a list of rewrite lists.
rewriteonce uses the actual current list of active rewrites (which is a list of

rewrite lists from different moves) as the list of lists parameter to rewriteoncewithalistlist.
fullrewrite implements aggressive rewriting wherever possible. The object

term output of the Define command is aggressively rewritten; note that sorts
are never rewritten, though rewrites can be used to justify viewing sorts as equal.
It is useful to note that fullrewrite does not rewrite the innards of λ-terms:
only entity arguments are rewritten by the auxiliary function fullrewrite2.
This might be something to explore.

headrewrite implements rewriting from the top only; it is currently used
only in the innards of the matching function.

This is the end of the huge block of mutually recursive functions which makes
up the central engine of Lestrade.

70

*)

(* utilities for name collision checks *)

(* utility for extending names *)

fun isnumeral c = (#"0" <= c andalso c <= #"9") orelse c = #"’";

fun isspecial c = c= #"~"

orelse c = #"@" orelse c = #"#" orelse c = #"$"

orelse c = #"%" orelse c = #"^" orelse c = #"&"

orelse c = #"*" orelse c = #"-" orelse c = #"+"

orelse c = #"=" orelse c = #"|" orelse c = #";" orelse c = #"." orelse c = #"<"

orelse c = #">" orelse c = #"?" orelse c = #"/"

orelse c = #"!" orelse c = #".";

(* an identifier starting with a special character can be extended with $;

any other identifier can be extended with ’ (single quote) *)

fun extend s = if isspecial(hd(explode s)) then s^"$" else s^"’";

fun extended s = length(explode s)>1 andalso (

hd(rev(explode s)) = #"$"

orelse hd(rev(explode s)) = #"’");

fun extendenough s context =

if stringdef s context = nil then s else extendenough(extend s)context;

fun extendenough2 (AbstArg(s,0)) context = AbstArg(extendenough s context,0) |

extendenough2 (EntArg(Ent(s,0))) context = (EntArg(Ent(extendenough s context,0))) |

extendenough2 x context = x;

fun makeadjoinable (World nil) rewrites context = World nil |

makeadjoinable (World ((n,s,t)::L)) rewrites context =

let val LL = makeadjoinable (World L) rewrites context in

if stringdef (nameof s) [LL] <> nil

then (saypause ("Essential name conflict with "^(nameof s));World nil) else

if stringdef (nameof s) (context) = nil

71

then addworld2 (n,s,t) LL

else if rewrites <> nil then (saypause "Lestrade will not extend names in saved worlds with rewrites."; World nil)

else let val ss = extendenough2 s (context) in

atypesubs s ss (addworld2 (n,s,t) LL)

end end

(*

This section provides functions for generating new names to replace ones
that cannot be used due to name collisions.

The classes of characters isnumeral and isspecial play a role in the for-
mulation of the possible shapes of Lestrade identifiers, discussed below.

The function extend applied to an identifier string extends it with $ if it
begins with a special character, and with ’ otherwise; the rules for identifiers
ensure that what results will still be an identifier.

The function extended checks whether an identifier is extended.
The functions extendenough and extendenough2 are used to extend iden-

tifiers enough times that they become undeclared.
The function makeadjoinable acts on a move by globally replacing each

name declared in the move which is declared in the current context with a
sufficiently extended version to avoid name conflicts. This is used when opening
saved moves which might contain names which conflict with names declared in
the context since they were saved.

*)

(* user command: open a new move (or a previously saved move) *)

(* USER COMMAND *)

fun Open s = ((*if defaultworld (!WORLDNAMES)

andalso not(defaultworld(s::(!WORLDNAMES)))

then saypause "Cannot follow default move with named move" else *)

(NAMESERIAL:=(!Maxfreshindex); let val W =

(*let val WW1 = *)abstractfind (s::(!WORLDNAMES)) (!SAVEDWORLDS) (* in

72

if WW1 <> nil then WW1 else abstractfind (s::

(makestring(length(tl(!WORLDNAMES))))::(tl(!WORLDNAMES)))

(!SAVEDWORLDS) end *)

and R = (* let val RR1 = *)

abstractfind (s::(!WORLDNAMES)) (!SAVEDREWRITES)(* in

if RR1 <> nil then RR1 else abstractfind (s

::(makestring(length(tl(!WORLDNAMES))))::(tl(!WORLDNAMES)))

(!SAVEDREWRITES) end *)

in

if W = nil then

(say0 "blank move created";CONTEXT := (World nil)::(!CONTEXT);

REWRITES:= (nil::(!REWRITES));WORLDNAMES := s::(!WORLDNAMES))

else let val WW = makeadjoinable (hd W) (if R = nil then nil else hd R) (!CONTEXT) in

(* if (!BREAKOUT) then saypause "Name collision issues cause open command to fail"

else *) (say0 "saved move loaded";CONTEXT := (WW)::(!CONTEXT);

REWRITES := (hd R)::(!REWRITES);

WORLDNAMES := s::(!WORLDNAMES)) end end));

(*

This is the user command which opens a new next move. The argument is a
name to be assigned to the move to be opened. One cannot open a move with
a non-default name (the default name being the numeral index of the move)
unless all positive indexed moves preceding it have non-default names.

If there is no saved move with the indicated name extending the current
context, an empty move is adjoined to the context and given that name.

If there is a saved move with the indicated name, makeadjoinable is applied
to it and the result becomes the next move. I do not believe the alternative which
raises an error message can actually occur (it could in earlier versions).

The serial counter for namespaces, NAMESERIAL, is set back to Maxfreshindex,
which is maintained as an upper bound on namespace indices in stored decla-
rations.

*)

73

(* extract the pattern and target from the list component

of the sort of a function justifying rewrites *)

fun getpattern nil = nil |

getpattern [x] = nil |

getpattern ((i,a,EType(that (App(y,n,[t]))))::x) = [t] |

getpattern (x::L) = getpattern L;

fun gettarget nil = nil |

gettarget ((i,a,EType(that (App(y,n,[t]))))::nil) = [t] |

gettarget [x] = nil |

gettarget (x::L) = gettarget L;

(*

These functions extract the pattern and target of a rewrite rule from the
sort of a function presented to justify it. I’m not sure why this utility appears
at this point in the code.

*)

(* make a single substitution in an argument/sort list *)

fun singlesubslist s t nil = nil |

singlesubslist s T ((i,a,t)::L)

= (1,argsubs s T a,typesubs s T t)::(singlesubslist s T L);

(*

The function singlesubslist may fall into the stray utility category.

*)

(* multiple substitutions for a specific case of higher order matching *)

74

fun negvar (EntArg(Ent(s,n))) = EntArg(Ent(s,0-n-1)) |

negvar (AbstArg(s,n)) = AbstArg(s,0-n-1) |

negvar x = x;

fun multisubs nil U T = T |

multisubs (x::L) ((n,a,t)::U) T = entsubs x (negvar a) (multisubs L U T);

fun multisubstypelist nil U = nil |

multisubstypelist (x::L) ((n,a,t)::U)

= (0, negvar a, t)::(singlesubslist a (negvar a) (multisubstypelist L U));

(*

This is a utility used by the implicit type inference mechanism to deduce
the value of a function variable applied to a list of constant values. The function
multisubs delivers the body of the function and the function multisubstypelist

delivers the type assignment for its variables. I believe that multitypesubs had
a bug in it, which I fixed 10/15/2017 (actually multisubstypelist is fairly triv-
ial now, but I’d rather leave it as it is so as not to have to rewrite the code in
the implicit argument inference function).

I’m contemplating making reverse substitution (substitution of expressions
for complex expressions) use a much harder criterion of equivalence than equalentities,
which is what it currently uses. This might give finer control over implicit ar-
gument inference.

*)

(* this computes the list of variable dependencies of terms of various kinds. *)

fun deps (Ent(s,0)) = if isnew(EntArg(Ent(s,0)))

then (if isvariable(EntArg(Ent(s,0)))

then [(EntArg(Ent(s,0)))] else nil)@

(typedeps(argtype(EntArg(Ent(s,0))))) else nil |

deps (App(s,0,L)) = if isnew(AbstArg(s,0))

then (if isvariable(AbstArg(s,0))

then [(AbstArg(s,0))]else nil)@

(typedeps(argtype(AbstArg(s,0)))@(depsarg L)) else depsarg L |

75

deps x = nil

and depsarg nil = nil |

depsarg((EntArg x)::L) = (deps x)@(depsarg L) |

depsarg ((AbstArg(s,0))::L) = if isnew(AbstArg(s,0))

then (if isvariable(AbstArg(s,0)) then [AbstArg(s,0)] else nil)

@(typedeps(argtype(AbstArg(s,0))))@(depsarg L)

else depsarg L |

depsarg ((Lambda x)::L) = typedeps(AType x) |

depsarg (x::L) = depsarg L

and typedeps (EType(that x)) = deps x |

typedeps (EType(IN x)) = deps x |

typedeps (EType x) = nil |

typedeps (AType(World [(i,EntArg x,T)])) = (deps x)@(typedeps T) |

typedeps (AType(World((i,A,T)::L))) =

(typedeps T)@(typedeps (AType(World L))) |

typedeps (AType x) = nil;

(*

These functions determine the list of variables on which items of an ML type
depend.

deps computes dependencies of an object term.
depsarg computes dependencies of an argument.
typedeps determines dependencies of a sort.

*)

(* functions for argument redundancy *)

(* a device for type casting an argument to a sort, used

in the internals of the main argument reduction functions

because they are doing very general term matching disguised

76

as sort matching, so casting is needed *)

fun arg2type (EntArg x) = EType(that x) |

arg2type (Lambda x) = AType x |

arg2type x = if expand2 x <> x then arg2type(expand2 x) else EType error;

(*

The arg2type function is a perverse gadget for type casting an argument to
a sort. The implicit argument inference mechanism makes use of very general
term matching disguised as sort matching, so needs such a mechanism.

*)

(* moretypes discovers candidate implicit arguments in the sorts

of explicitly given arguments at declaration time *)

(* it is initially analyzing a sort, but it looks into component application

terms, so it is constantly type casting arguments to sorts, weirdly *)

fun moretypes (EType(that (Ent(s,0)))) =

if isvariable (EntArg(Ent(s,0))) then [(EntArg(Ent(s,0)),EType prop)] else nil |

moretypes (EType(IN (Ent(s,0)))) = if isvariable (EntArg(Ent(s,0)))

then [(EntArg(Ent(s,0)),EType TYPE)] else nil |

moretypes (EType(that (App(s,n,(x::L))))) =

(if isvariable(AbstArg(s,n)) then [(AbstArg(s,n),argtype(AbstArg(s,n)))]

@(moretypes(argtype(AbstArg((s,n))))) else nil)

@(if isvariable x then [(x,argtype x)]@(moretypes(EType(that(App(s,n,L)))))

else (moretypes((arg2type x)))@(moretypes(EType(that(App(s,n,L)))))) |

moretypes (EType(IN (App(s,n,(x::L))))) = moretypes (EType(that (App(s,n,(x::L))))) |

moretypes (AType(World(nil))) = nil |

moretypes (AType(World([(i,a,t)]))) = (moretypes (EType(that (deent a))))@(moretypes t) |

moretypes (AType(World((i,a,t)::L))) = (moretypes t)@(moretypes(AType(World L)))|

moretypes x = nil;

77

(*

This function discovers all variables on which a sort depends and returns
a list of these variables paired with their types. It ends up doing structural
induction on general terms, which means that it is doing some rather strange
casting of terms of other ML types to sort terms. The output of moretypes is
used to identify candidates for implicit arguments to be identified to an explicitly
given argument list at the time a function is declared.

*)

(* now outline the strategy: take the first element in the argument list.

compute the expanded alternate list of its tail. Compute the deps of the item

and drop all dotted and undotted versions of the deps from the previous list.

Then add the item. Then add dotted versions of its moretypes list, and replace

undotted versions with dotted versions throughout. *)

(* add or remove the initial period (.) which distinguishes

the name of an implicit argument from the name of an explicit argument *)

fun dot s = if s = "" then "" else if hd(explode s) = #"." then s else "."^s;

fun undot s = if s="" then ""

else if hd(explode s) = #"." then implode(tl(explode s)) else s;

fun argdot (EntArg(Ent(s,n))) = (EntArg(Ent(dot s,n))) |

argdot (AbstArg(s,n)) = AbstArg(dot s,n) |

argdot x = x;

fun argundot (EntArg(Ent(s,n))) = (EntArg(Ent(undot s,n))) |

argundot (AbstArg(s,n)) = AbstArg(undot s,n) |

argundot x = x;

(*

Implicit arguments in reported sorts of declared functions are dotted (an
initial period is affixed). These functions manage the attachment of dots and
removal of dots.

78

*)

fun incrementlist nil = nil |

incrementlist ((i,a,t)::L) = (i+1,a,t)::(incrementlist L);

(*

Some trouble is taken to keep the ages of items in argument lists in the
correct order. It isn’t entirely clear to me as I work on the first pass of the
literate programming version whether this is actually needed, but there might
indeed be circumstances where expanded argument lists are converted to moves,
and in such circumstances this would be important. incrementlist is a utility
used for this purpose.

*)

(* this function adds dotted items to an argument list. It is complicated

by the need to ensure that when dotted items

are added in a bloc (output of moretypes)

to an argument list that their order is corrected if necessary

to keep dependencies sound *)

fun addotlist nil L = L |

addotlist ((s,t)::M) nil = [(1,argdot s,t)] |

addotlist ((s,t)::M) ((i,a,T)::L) = addotlist (moretypes t)((i,argdot s,t)

::(singlesubslist s (argdot s) ((droplist(typedeps t)

(droplist (map argdot (typedeps t))

(drop s(drop (argdot s)(addotlist M (incrementlist((i,a,T)::L))))))))));

(*

This function adds dotted versions of implicit arguments that need to be
added (using moretypes). It removes additional subsequent dotted or undotted
copies of the arguments added as well as copies of anything that the new type
added depends on.

*)

79

(* this replaces a list of items with their dotted versions

throughout an argument/sort list *)

fun dotsubslist ((s,t)::L) nil = nil |

dotsubslist nil L = L |

dotsubslist ((s,t)::L) ((i,a,T)::M) = dotsubslist L

((i, argsubs s (argdot s) a, typesubs s (argdot s) T)::(dotsubslist ((s,t)::L) M));

(* expand the list of arguments presented for a function

at declaration time

with inferred implicit arguments *)

(*

Replace a list of items with their dotted versions throughout an argument
list. Probably a stray utility to be moved near the earlier list of such utilities.

*)

fun expandlist nil = nil |

expandlist ((i,EntArg(Ent(s,0)),t)::L) = addotlist(moretypes t)

(dotsubslist((moretypes t))(droplist(map pi1 (moretypes t))((i,EntArg(Ent(s,0)),t)::

(singlesubslist (EntArg(Ent(dot s,0))) (EntArg(Ent(s,0)))

(drop (EntArg(Ent(s,0))) (drop (EntArg(Ent(dot s,0)))

(droplist(typedeps t) (droplist(map argdot (typedeps t))(expandlist L)))))))))

|

expandlist ((i,AbstArg((s,0)),t)::L) = addotlist(moretypes t)

(dotsubslist((moretypes t))

(droplist(map pi1 (moretypes t))((i,AbstArg((s,0)),t)::

(singlesubslist (AbstArg((dot s,0))) (AbstArg((s,0)))

(drop (AbstArg((s,0))) (drop (AbstArg((dot s,0)))

(droplist(typedeps t)

(droplist(map argdot (typedeps t))(expandlist L)))))))))

|

80

expandlist ((i,a,t)::L) = addotlist(moretypes t)

(dotsubslist((moretypes t))(droplist(map pi1 (moretypes t))((i,a,t)::

((* drop (EntArg(Ent(s,0))) *) (droplist(typedeps t)

(droplist(map argdot (typedeps t))(expandlist L)))))))

;

fun guardedexpandlist L = if (!IMPLICITVER) then (expandlist L) else L;

(*

Here are the functions which generate full argument lists of declared func-
tions from the arguments explicitly given. The overall strategy is best described
by quoting a comment above:

“take the first element in the argument list (‘the item’); compute the ex-
panded alternate list of the tail of the argument list (’the previous list’); Com-
pute the deps of the item and drop all dotted and undotted versions of the deps
from the previous list. Then add the item. Then add dotted versions of the
moretypes list of the item, and replace undotted versions of these variables with
dotted versions throughout.”

*)

(* functions to repair an argument list,

adding values for implicit arguments in the sort *)

fun firstundotted nil = EType error |

firstundotted ((i,EntArg(Ent(s,n)),t)::L) =

if s<> "" andalso hd(explode s) = #"." then firstundotted L

else t |

firstundotted ((i,AbstArg((s,n)),t)::L) =

if s<> "" andalso hd(explode s) = #"." then firstundotted L

else t |

firstundotted ((i,a,t)::L) = t;

(*

firstundotted should go with other dot manipulations. The latter function
actually returns the sort of the first undotted argument.

81

*)

fun initialsegment nil L = true |

initialsegment (x::L) (y::M) = if x<>y then false else initialsegment L M |

initialsegment L M = false;

fun matchsegment nil L = nil |

matchsegment (x::L) (y::M) =

(y::(matchsegment L M)) |

matchsegment L M = M;

(*

initialsegment tests whether its first argument is an initial segment of its
second argument.

matchsegment returns as long an initial segment as possible of a second list
which is the same length as an initial segment of the first list.

*)

(* This function finds the value of a given implicit argument

by sort matching. Since it is actually looking deep into the structure

of ordinary terms embedded in sorts, including ordinary terms with

variable binding, it is doing a lot of weird type casting, sometimes

quite incompatible with Lestrade’s own type system :-)

In principle, this search can fail, if an argument is implicitly sorted

using a subterm of a sort which can actually be eliminated by a definitional

expansion. I have not seen this happen. It would not represent a failure

of the logic: the implicit argument feature actually touches the logic

not at all.

It can fail quite easily for an implicit function argument.

*)

82

(*

arguments of the monster function findimplicitarg:
Types1: This is the list of bound identifiers and sorts in the term containing

the implicit argument.
Types: This is the list of sorts of locally bound identifiers in the term from

which we are trying to recover a value for the implicit argument by matching.
a: This is the implicit argument one is trying to evaluate.
atype: This is the sort of the implicit argument one is trying to evaluate.

*)

fun findimplicitarg Types1 Types a atype

(EType(that(App(s,n,(x::L))))) (EType(that(App(t,m,(y::M))))) =

let val VV18 = if a = AbstArg(s,n)

andalso initialsegment (x::L) (map (fn (x1,y1,z1) => y1) Types1) then

silenttypematchcomp0 (deworld2 atype)

(matchsegment (x::L) Types) else error in

if a = AbstArg(s,n)

andalso initialsegment (x::L) (map (fn (x1,y1,z1) => y1) Types1)

andalso VV18 <> error then

if (y::M) = (map (fn (x1,y1,z1) => y1) (matchsegment (x::L) Types))

then AbstArg(t,m) else

Lambda((World((matchsegment (x::L) Types)@[(0,EntArg(App(t,m,(y::M))),

EType (VV18))])))

else if a = AbstArg(s,n) (* andalso

entitytype (App(t,m,y::M)) <> error *) andalso

equalenttypes (silenttypematchcomp0 (deworld2 atype)

(map (fn xx => (1,xx,argtype xx)) (y::M)))

(entitytype (App(t,m,y::M))) then AbstArg(t,m)

(*

This (minus the last paragraph) is a clever gadget for evaluating function
implicit arguments as anonymous function terms. Where the argument list of a
term f(x1, . . . , xn) is an initial segment of the locally bound variables, f is the
implicit argument we are trying to evaluate, and T is the term we are matching,
we can identify f as (λx1, . . . , xn.T), or if T is of the form g(x1, . . . , xn) we may
identify f as g.

83

It would be nice to be able to do this when the argument list was an arbitrary
sublist of the locally bound variables (subject to issues about dependencies).
But the restriction to initial segments is powerfully simplifying.

The last paragraph implements the condition that one can also identify f
with g if the term T is of the form g(u1, . . . , un), containing no bound variables,
and has the correct types.

*)

else let val TTT = (App(t,m,(y::M))) and UU = if a = AbstArg(s,n) then silenttypematchcomp0 (deworld2 atype)

(multisubstypelist (x::L) (deworld2 atype)) else error in

if a = AbstArg(s,n)

andalso UU <> error

then (Lambda(renamespace(World((multisubstypelist (x::L) (deworld2 atype))@

[(0,EntArg(multisubs (x::L) (deworld2 atype) TTT),

EType(UU))]))))

(*

This is a partial implementation of the idea that we can match f(u1, . . . , un)
with a term T , where f is the variable to be identified and the ui’s contain no
bound variables, with a deduced (really guessed) function of the ui’s constructed
by a reverse substitution process (replace the ui’s with bound variables and build
a λ-term). This is where the functions multisubs and multisubstypelist find
their only use.

The problem with multisubstypelist destroying dependent types has been
fixed. As it happens, multisubstypelist is a rather trivial function and much
of what goes on here is now wheel-spinning. I’m going to leave it alone for now
to avoid typos.

*)

else

if s<>t orelse m<>n then

let val T = expand (App(s,n,(x::L))) and U = expand (App(t,m,(y::M))) in

if T <> (App(s,n,(x::L)))

84

then

let val V = findimplicitarg Types1 Types a atype

(EType(that(T))) (EType(that(App(t,m,(y::M)))))

in if V <> EntArg Error

then V

else if U = (App(t,m,(y::M))) then EntArg Error

else findimplicitarg Types1 Types a atype

(EType(that(App(s,n,(x::L))))) (EType(that(U))) end

else if U = (App(t,m,(y::M))) then EntArg Error

else findimplicitarg Types1 Types a atype

(EType(that(App(s,n,(x::L))))) (EType(that(U))) end

(*

Here Lestrade attempts to deduce the implicit argument by definitional ex-
pansion. Rewriting is not used.

*)

else if a = x then y

else let val T = findimplicitarg Types1 Types a atype (arg2type x) (arg2type y) in

if T <> EntArg Error then T

else findimplicitarg Types1 Types a atype

(EType(that(App(s,n,L)))) (EType(that(App(t,m,M)))) end end end

(*

If the first argument of the term being matched is the implicit argument to
be evaluated, we can set its value to the first argument of the term it is being
matched to.

Otherwise we can attempt implicit argument matching of the types of the
respective first arguments.

Otherwise we can match the terms with the first arguments dropped.

85

*)

|

findimplicitarg Types1 Types a atype (EType(that(App(s,n,(L))))) (EType(that(T))) =

let val VV19=if a = AbstArg(s,n)

andalso initialsegment L (map (fn (x1,y1,z1) => y1) Types1) then silenttypematchcomp0 (deworld2 atype)

(matchsegment L Types) else error in

if a = AbstArg(s,n)

andalso initialsegment L (map (fn (x1,y1,z1) => y1) Types1)

andalso VV19 <> error

then (Lambda(World((matchsegment L Types)@

[(0,EntArg T, EType (VV19))])))

else let val VV17 = if a = AbstArg(s,n) then silenttypematchcomp0 (deworld2 atype)

((multisubstypelist L ((deworld2 atype)))) else error in

if a = AbstArg(s,n)

andalso VV17 <> error

then (

Lambda(renamespace(World((multisubstypelist L (deworld2 atype))@

[(0,EntArg(multisubs L (deworld2 atype) T),

EType(VV17))]))))

else if expand (App(s,n,L)) <> App(s,n,L) then

findimplicitarg Types1 Types a atype

(EType(that(expand(App(s,n,(L)))))) (EType(that(T)))

else if expand T <> T then

findimplicitarg Types1 Types a atype

(EType(that(App(s,n,L)))) (EType(that(expand(T))))

else EntArg Error end end

86

(*

The various approaches taken here are closely analogous to the approaches
taken in the previous clause, except that T has no application structure to appeal
to. It should be noted that T is presumably an atomic constant or variable.

*)

|

findimplicitarg Types1 Types a atype

(EType(IN(App(s,n,(L))))) (EType(IN(T))) =

findimplicitarg Types1 Types a atype

(EType(that(App(s,n,(L))))) (EType(that(T)))

(*

Sorts built with in instead of that are handled in the same way.

*)

|

findimplicitarg Types1 Types a atype (EType(that b)) (EType(that c)) =

if a=EntArg b then EntArg c else EntArg Error

(*

Where we are matching an atomic term to a term, the only way we can
succeed is if the atomic term is the implicit argument we are trying to find a
value for.

*)

|

findimplicitarg Types1 Types a atype (EType(IN b)) (EType(IN c)) =

if a=EntArg b then EntArg c else EntArg Error

(*

87

Where we are matching an atomic term to a term, the only way we can
succeed is if the atomic term is the implicit argument we are trying to find a
value for.

*)

|

findimplicitarg Types1 Types a atype

(AType(World([(i,b,t)]))) (AType(World([(j,c,u)]))) =

let val T = findimplicitarg Types1 Types a atype t u in

if T = EntArg Error then findimplicitarg Types1 Types a atype

(EType (that (deent b))) (EType (that (deent c)))

else T end

(*

Here we are matching the tail of a λ-term or function sort term: we attempt
to find the implicit argument by matching sorts, and then by matching definition
bodies.

*)

|

findimplicitarg Types1 Types a atype

(AType(World((i,b,t)::L))) (AType(World((j,c,u)::M))) =

let val T = findimplicitarg Types1 Types

a atype t u in if T = EntArg Error

then findimplicitarg (Types1@[(i,b,t)]) (Types@[(j,c,u)])

a atype (AType (World L)) (AType (World M)) else T end

(*

Here we are matching a term in which a variable is bound. We first attempt
to recover the implicit argument by matching the types of the variables; we
then attempt to recover the implicit argument by matching the rest of the
term, adding the two bound variables matched and their sorts to Types1 and
Types.

88

*)

|

findimplicitarg Types1 Types a atype x y = EntArg Error;

(*

This monstrously involved function uses matching in various ways to try
to divine correct values for implicit arguments in concretely given instances
of functions declared with implicit arguments. The most reassuring thing is
that the entire implicit argument feature touches the logic not at all; if implicit
argument inference fails, one can always fix things by supplying the argument
which the system failed to deduce. However, implicit argument inference is
enormously useful, especially when the value of a function argument can be
deduced.

This function needs to be revisited and decorated with local comments on
its cases. (I have done this, and when I did it I found the function much more
intelligible).

*)

(* this function repairs the argument list supplied to a function with

implicit arguments at parse time. It is important to notice that implicit arguments

play no role in the logic at all! *)

fun fixarglist nil x = nil |

fixarglist x nil = nil |

fixarglist ((i,EntArg(Ent(s,n)),t)::L) ((T)::M) =

if s = "" orelse hd(explode s) <> #"."

then (T)::(fixarglist (singlesubslist (EntArg(Ent(s,n))) T L) M)

else

let val MM = (findimplicitarg nil nil (EntArg(Ent(s,n)))

(typesubs (EntArg Unknown) (EntArg Unknown) t) (firstundotted L) (argtype T)) in

(MM::(fixarglist (singlesubslist (EntArg(Ent(s,n))) MM L)((T)::M))) end |

89

fixarglist ((i,AbstArg((s,n)),t)::L) ((T)::M) =

if s="" orelse hd(explode s) <> #"."

then (T)::(fixarglist (singlesubslist (AbstArg(s,n)) T L) M)

else

let val MM = findimplicitarg nil nil ((AbstArg(s,n)))

(typesubs (EntArg Unknown) (EntArg Unknown) t) (firstundotted L) (argtype T) in

(MM::(fixarglist (singlesubslist (AbstArg(s,n)) MM L) ((T)::M))) end |

fixarglist (x::L) (y::M) = y::(fixarglist L M);

fun guardedfixarglist L M = if (!IMPLICITVER) then fixarglist L M else M;

(*

This function uses findimplicitarg to expand explicitly given argument
lists to full argument lists expected by declared functions. The customer of this
function is the parser , not any core function of the logic. It is useful to note
that this will work correctly on an initial segment of an explictly argument list
(in the case of “curried function arguments”.)

*)

(* The following block of functions is used in the quite elaborate

check of the structure of inputs to the rewritep and rewrited commands *)

fun lasttwo (x::y::z::L) = lasttwo (y::z::L) |

lasttwo L = L;

fun allbutlasttwo nil = nil |

allbutlasttwo [x] = nil |

allbutlasttwo [x,y] = nil |

allbutlasttwo (x::L) = x::(allbutlasttwo L);

(* check correctness of argument lists for rewriting commands *)

(* a good rewrite list has at least two elements in it *)

90

fun goodrewritelist nil = false |

goodrewritelist [x] = false |

goodrewritelist L =

let val [Q,R] = lasttwo(L) in let val T = argtype Q in

(* Q is an object argument and not polymorphic *)

notvararg Q andalso typerigid(deent Q) andalso

(* the last two items have the same sort *)

equaltypes false T (argtype R)

(* andalso

(* the first of the last three items

is a predicate (or type constructor) variable over this sort *)

isvariable P andalso

(equaltypes true (argtype P)

(AType(World([(~1,EntArg(Ent("???",1)),T),

(~1,EntArg(Unknown),EType prop)])))

(* restoring symmetry between prop and type -- commented out, could be restored *)

(* orelse equaltypes true (argtype P)

(AType(World([(~1,EntArg(Ent("???",1)),T),

(~1,EntArg(Unknown),EType TYPE)]))) *))

andalso

(* P does not appear in the deps of Q *)

not (inlist P (depsarg [Q])) *)

(* everything in allbutlasttwo L appears in the deps of Q *)

andalso allinlist (allbutlasttwo L) (depsarg [Q])

(* everything in the deps of R appears in Q *)

91

andalso allinlist (depsarg [R]) (depsarg [Q]) end end;

(*

This function checks the structure of argument lists of the rewritep and
rewrited commands. The embedded comments are somewhat outdated. Origi-
nally, the last three arguments were a predicate of objects of a certain type, then
the pattern and target of the rewrite rule, two terms of that object type. The
predicate is no longer present (it is automatically generated by the declaration
commands). The pattern needs to be a type rigid object term. Every preceding
variable must appear in the dependencies of the pattern. The dependencies of
the target must be a subset of the dependencies of the pattern.

*)

(* user command: close the last move opened;

this sends an error message if it attempts to close world 1 *)

(* Close does not automatically save the next move: that has to be done with Save() *)

(* drafting a way to deal with the problem of hypothetical rewrites: since

dependencies on hypothetical rewrites are not recorded, if we close a world

in which there are such rewrites, we must discard whatever might depend

on them, which is everything (or everything after them?) *)

(* USER COMMAND *)

fun Close() = (if length(!CONTEXT) > 2 then

(clearallcaches();NAMESERIAL:=(!Maxfreshindex);

CONTEXT:= (tl (!CONTEXT));REWRITES:=tl(!REWRITES);

(* if hd(!REWRITES) <> nil then (say "Eliminating dependencies on hypothetical rewrites";CONTEXT:= (World nil)::(tl(!CONTEXT));REWRITES:= nil :: (tl(!REWRITES))) else (); *)

WORLDNAMES:= tl(!WORLDNAMES))

else saypause ("Cannot undo move 1:"^(hd (!WORLDNAMES))));

(*

This is the user command close which simply closes the next move. One
cannot close world 1, and in this case an error message will be issued.

The serial counter for namespaces, NAMESERIAL, is set back to Maxfreshindex,
which is maintained as an upper bound on namespace indices in stored decla-
rations.

92

*)

fun savelist worldnames context =

if length context <= 1 orelse length worldnames <= 1 then nil

else (worldnames,hd context)::(savelist (tl worldnames) (tl context));

(* save all moves on path to next move *)

(* it is not possible to save a move which has its default numerical name *)

(* USER COMMAND *)

fun Save s = (* if s = makestring(length(!CONTEXT)-1)

then saypause "Cannot save a move with the default numeral name"

else *)

(* if defaultworld (tl(!WORLDNAMES))

then saypause "Cannot save a default move" else *)

(if s <> hd(!WORLDNAMES) then

(SAVEDWORLDS:= abstractdrop2 (s::(tl(!WORLDNAMES))) (!SAVEDWORLDS);

SAVEDREWRITES:= abstractdrop2 (s::(tl(!WORLDNAMES))) (!SAVEDREWRITES)) else ();

SAVEDWORLDS := abstractmerge

(savelist (s::(tl(!WORLDNAMES))) (!CONTEXT))(!SAVEDWORLDS);

SAVEDREWRITES := abstractmerge

(savelist (s::(tl(!WORLDNAMES))) (!REWRITES))(!SAVEDREWRITES);

WORLDNAMES:=s::(tl(!WORLDNAMES)));

(*

This is the user command save which saves a move with a string argument
as name. A move cannot be saved with its default numeral name, nor can it
be saved if the last move has its default numeral name, unless the last move is
move 0.

When a move is “saved over”, that move is replaced and all moves extending
it are eliminated.

*)

(* USER COMMAND *)

fun ClearCurrent s = (* if defaultworld (tl(!WORLDNAMES))

93

andalso not(defaultworld(s::(tl(!WORLDNAMES))))

then saypause "Named move cannot follow a default move" else *)

(clearallcaches();NAMESERIAL:=(!Maxfreshindex);

let val W = abstractfind (s::(tl(!WORLDNAMES))) (!SAVEDWORLDS)

and R = abstractfind (s::(tl(!WORLDNAMES))) (!SAVEDREWRITES)

in

if W = nil orelse s = makestring(length(!WORLDNAMES)-1) then

(say0 "clearing current next move";CONTEXT:=(World nil)::(tl (!CONTEXT)); REWRITES:=nil

::(tl(!REWRITES));WORLDNAMES:=s::(tl(!WORLDNAMES));

SAVEDWORLDS:= abstractdrop2 (!WORLDNAMES) (!SAVEDWORLDS);

SAVEDREWRITES:= abstractdrop2 (!WORLDNAMES) (!SAVEDREWRITES))

else let val WW = makeadjoinable(hd W) (if R = nil then nil else hd R) (tl(!CONTEXT)) in

if (!BREAKOUT) then (saypause "Clearcurrent command fails due to name conflicts")

else (say0 "replacing current move with saved current move";CONTEXT:=(WW)::(tl (!CONTEXT));

REWRITES:=(hd R)::(tl (!REWRITES));

WORLDNAMES:=s::(tl(!WORLDNAMES))) end end);

(*

This is the user command clearcurrent. Without an argument, it will
discard all contents of the next move, leaving the next move empty (not closing
it). This is useful because otherwise declarations in world 1 could not be cleared.
If clearcurrent is called with an argument, it will load the saved move with
that name if there is an appropriate one and the argument is not the default
numerical name of the move; it will in any case use the argument as the name
of the next move. When the argument is the default name and there is a
saved move with the default name, that move and all moves extending it are
eliminated.

The case where the command fails due to name conflicts is I believe now not
possible, due to the use of makeadjoinable.

The serial counter for namespaces, NAMESERIAL, is set back to Maxfreshindex,
which is maintained as an upper bound on namespace indices in stored decla-
rations.

*)

94

(*

This is the serial number for a fresh declaration line.

*)

(* completely clear the Lestrade context, user command, also

issued by readfile *)

(* USER COMMAND *)

fun ClearAll() = (clearallcaches();GREETED:=false;CONTEXT:=[World nil,World nil];

REWRITES:=[nil,nil];SERIAL:=0;NAMESERIAL:=0;Maxfreshindex:=0;WORLDNAMES:=["1","0"];SAVEDWORLDS:=nil;SAVEDREWRITES:=nil);

(*

This user command clears all declarations and sets all indices to initial values.

*)

(* load a named theory.

This completely clears the context, supplying the move 0

declarations of the saved theory --

without rewrite decs, perhaps I should fix this. *)

(* USER COMMAND *)

fun LoadTheory s = let val S = abstractfind s (!SAVEDTHEORIES) in

if s="" orelse S = nil then

saypause

("No such theory to load:\n"^s

^".lti must be read before this file can be read")

else let val (S1,S2,S3,S4,S5,S6,S7,S8) = hd S in

(clearallcaches();GREETED:=false;CONTEXT:=S1;

REWRITES:=S2;SERIAL:=S3;NAMESERIAL:=S4;Maxfreshindex:=S5;WORLDNAMES:=S6;SAVEDWORLDS:=S7;SAVEDREWRITES:=S8)

end end;

95

(*

This user command clears the context entirely then completely restores the
saved theory named by the argument with all details (in older versions, it loaded
move 0 of the named theory; this is no longer the case; it loads the exact context
with which the theory was saved).

*)

fun max x y = if x>= y then x else y;

fun ImportTheory s =

let val S0 = (abstractfind s (!SAVEDTHEORIES)) in

if s="" orelse S0 = nil then

saypause ("No such theory to import:\n"^s

^".lti must be read before this file can be read")

else

let val (S1,S2,S3,S4,S5,S6,S7,S8) = hd S0 in

let val WW = makeadjoinable(hd(rev S1)) (hd (rev S2)) [hd(rev(!CONTEXT))] in

(* if !BREAKOUT then saypause "Import fails due to name conflicts" else *)

(* if S2 <> nil then saypause "Theories with rewrites cannot be imported." else *)

(SERIAL:=max (!SERIAL) (S3);

NAMESERIAL:=max (!NAMESERIAL) (S4);

Maxfreshindex:=max(!Maxfreshindex)(S5);

SAVEDWORLDS := ([s,"0"],WW)::(abstractdrop2 [s,"0"] (!SAVEDWORLDS));

SAVEDREWRITES := ([s,"0"],nil)::(abstractdrop2 [s,"0"] (!SAVEDREWRITES))) end end end;

(*

This user command imports move 0 of a named theory as a new move 1
with the theory name as its name (applying makeadjoinable to avert name
conflicts). Rewrites are restored; this has hazards.

96

*)

(* sort check an object sort.

This checks that P in that P is a prop and T in in T is a type *)

fun typecheck obj = true |

typecheck prop = true |

typecheck TYPE = true |

typecheck (that P) =

let val ANSWER = (entitytype P = prop) in

(if not ANSWER then

saypause ((display2 P)^" is not of sort prop (typecheck)")else();

Flush();ANSWER) end|

typecheck (IN P) =

let val ANSWER = (entitytype P = TYPE) in

(if not ANSWER then saypause

((display2 P)^" is not of sort ’type’ (typecheck)")else();Flush();ANSWER) end|

typecheck error = false;

(*

This command sort checks an object sort. Is this really the right place for
it to appear? Maybe it is: it has dynamic behavior really only appropriate in
the context of user commands about to be presented.

*)

(* the object declaration command will take as arguments a string

s and an EntType T. It needs to check that s is not already declared,

then check that T declaration checks,

then add (EntArg(Ent(s)),T) as an entry to the first move in the context *)

(* actually it needs to do a full type check that T is of type prop *)

(* increment the declaration age counter *)

97

fun newserial() = (SERIAL:=1+(!SERIAL);(!SERIAL));

(* reserved identifiers. *)

fun reserved s = s="obj" orelse s="prop" orelse s="that"

orelse s="type" orelse s="in" orelse s = "---" orelse s = "+++" orelse s = "???" orelse s = "=>";

(*

newserial increments the number reserved for the next declaration line.
reserved tells us if an identifier is reserved by the system and so cannot be

declared.

*)

(* command for postulating an object in the next move *)

(* USER COMMAND *)

fun Declare s (EType T) =

if reserved s (* orelse extended s *) orelse stringdef s (!CONTEXT) <> nil

then saypause ("Identifier "^s^" is not fresh")

else if not (typecheck T) then saypause "Sort check fails"

else (CONTEXT := (addtoworld0 (hd(!CONTEXT))(newserial(),

EntArg(Ent (s,0)),EType T))::(tl(!CONTEXT));showdec s) |

Declare s (AType T) = if reserved s (* orelse extended s *) orelse stringdef s (!CONTEXT) <> nil

then saypause ("Identifier "^s^" is not fresh")

else (CONTEXT := (addtoworld0 (hd(!CONTEXT))(newserial(),

AbstArg(s,0),AType T))::(tl(!CONTEXT));showdec s);

(*

This command allows the user to declare a variable of an object sort. 10/19/2017
The user may also declare a variable of a function sort. Function sort terms
consist of a bracket followed by a list of variables whose types are taken from
the next move followed by an object sort term. This short-circuits the move
model a bit, in the same way that lambda term arguments do.

*)

(* the list of names of identifiers is in order of age;

98

this ensures sensible dependencies without evilly recursive

checks *)

(* modified to support the notion that definitions have

age 0 *)

(* fun isordered nil = true |

isordered [a] = true |

isordered (a::(b::L)) =

hd(Age a (hd(!CONTEXT))) <> 0 andalso

(hd(Age a (hd(!CONTEXT))) < hd(Age(b)(hd(!CONTEXT)))

andalso isordered (b::L)); *)

(* there are some functions here for interaction with

the implicit arguments feature *)

fun dotfix nil t = t |

dotfix ((i,a,t)::L) t2 = if (!IMPLICITVER)

andalso argundot a <> a

then etypesubs (argundot a) a (dotfix L t2) else dotfix L t2;

fun dotfix2 nil t = t |

dotfix2 ((i,a,t)::L) t2 = if (!IMPLICITVER)

andalso argundot a <> a

then entsubs (argundot a) a (dotfix2 L t2) else dotfix2 L t2;

(* remove dotted items from a list; used by the parser *)

fun dotpurge nil = nil |

dotpurge ((i,EntArg(Ent(s,n)),t)::L) = if (!IMPLICITVER) then

if s <> "" andalso hd(explode s) = #"." then dotpurge L

else ((i,EntArg(Ent(s,n)),t)::(dotpurge L))

else ((i,EntArg(Ent(s,n)),t)::L) |

dotpurge((i,AbstArg(s,n),t)::L) = if (!IMPLICITVER) then

if s <> "" andalso hd(explode s) = #"." then dotpurge L

else ((i,AbstArg(s,n),t)::(dotpurge L)) else

99

((i,AbstArg(s,n),t)::L) |

dotpurge (x::L) = x::(dotpurge L);

(*

I’m not sure why these dot manipulation tools are in this location.

*)

(* toolkit for turning argument lists into moves -- the

sort of a function is a little move *)

fun worlditem s = (hd(Age s (hd(!CONTEXT))),s,

typesubs (EntArg Unknown) (EntArg Unknown)

(hd(Find s (hd(!CONTEXT)))));

fun worldof L = World(guardedexpandlist(map worlditem L));

(*

Turn an argument list into a move (adding implicit arguments as needed).

*)

(* the next move is temporarily replaced

during the declaration process for functions -- this is a place to keep it *)

val SAVECONTEXT = ref (hd(!CONTEXT));

val SAVECONTEXT2 = ref (hd(!CONTEXT));

(*

It is convenient during a declaration to cut down the next move into just
the arguments being used in that declaration. These are places to keep different
versions of the next move.

*)

(* in postulate, the user supplies as an argument list

100

all notions in the next move on which the construction

depends, in order of construction.

We do a dynamic maneuver: replace the next move with the

part of the next move indicated by the argument list;

declaration check this move using the resulting context

(checking that it includes all its own needed dependencies)

and sort check the object sort argument in this context; then restore the context. *)

(* command for postulating a construction in the last move *)

(* s is a name. L could also be a list of names. T is an object sort. *)

(* USER COMMAND *)

fun postulate s L T =

if hd(!REWRITES) <> nil then saypause "postulate command blocked by hypothetical rewrites" else

if not(testall isvariable L) then saypause "Some argument is not variable"

(* testing for order is a cute way to enforce sensible dependencies;

the implicit arguments feature now does the laborious checks for this, but

if it is turned off this condition handles deps just fine *)

else if not (isordered L) then saypause "Arguments are in the wrong order"

else let val T = dotfix (deworld(worldof L)) T in

(

if reserved s (* orelse extended s *) orelse stringtype s <> nil

then saypause ("Identifier "^s^" is not fresh")

else if L = nil then

let val TT = etypesubs (EntArg Unknown) (EntArg Unknown) T in

(SAVECONTEXT:=hd(!CONTEXT);

CONTEXT:=(World nil)::tl(!CONTEXT);if not (typecheck TT)

then (saypause "Sort check fails in declaration of constant";

CONTEXT:=(!SAVECONTEXT)::(!CONTEXT))

else (CONTEXT := (!SAVECONTEXT)::

(addtoworld0 (hd(tl(!CONTEXT)))(newserial(),EntArg(Ent (s,0)),EType TT))

::(tl(tl(!CONTEXT)));showdec s)) end

else if not

101

let val TT = (etypesubs (EntArg Unknown) (EntArg Unknown) T) in

(

SAVECONTEXT:=(hd(!CONTEXT));

CONTEXT:= (worldof (*worldof2*) L)::(tl(!CONTEXT));

let val CHECK = deccheck4 (!CONTEXT) (hd(!CONTEXT))

andalso typecheck (TT) in (CONTEXT:=(!SAVECONTEXT)::(tl(!CONTEXT));CHECK)

end

) end then saypause "Dependency or sort check failure"

else (

let val newparentcontext = addtoworld0 (hd(tl(!CONTEXT)))

(newserial(),AbstArg(s,0),(Reset();

Reindex3(AType(renamespace(addtoworld0 (worldof L)

(0,EntArg Unknown,typesubs (EntArg Unknown) (EntArg Unknown) (EType T))))))) in

(CONTEXT:= (hd(!CONTEXT))::newparentcontext::(tl(tl(!CONTEXT)));showdec s) end)

) end;

fun ddefine s L T =

if hd(!REWRITES) <> nil then saypause "deferred definition command blocked by hypothetical rewrites" else

if not(testall isvariable L) then saypause "Some argument is not variable"

(* testing for order is a cute way to enforce sensible dependencies;

the implicit arguments feature now does the laborious checks for this, but

if it is turned off this condition handles deps just fine *)

else if not (isordered L) then saypause "Arguments are in the wrong order"

else let val T = dotfix (deworld(worldof L)) T in

(

if reserved s (* orelse extended s *) orelse stringtype s <> nil

then saypause ("Identifier "^s^" is not fresh")

(* else if L = nil then

let val TT = etypesubs (EntArg Unknown) (EntArg Unknown) T in

102

(SAVECONTEXT:=hd(!CONTEXT);

CONTEXT:=(World nil)::tl(!CONTEXT);if not (typecheck TT)

then (saypause "Sort check fails in declaration of constant";

CONTEXT:=(!SAVECONTEXT)::(!CONTEXT))

else (CONTEXT := (!SAVECONTEXT)::

(addtoworld0 (hd(tl(!CONTEXT)))(newserial(),EntArg(Ent (s,0)),EType TT))

::(tl(tl(!CONTEXT)));showdec s)) end *)

else if not

let val TT = (etypesubs (EntArg Unknown) (EntArg Unknown) T) in

(

SAVECONTEXT:=(hd(!CONTEXT));

CONTEXT:= (worldof (*worldof2*) L)::(tl(!CONTEXT));

let val CHECK = deccheck4 (!CONTEXT) (hd(!CONTEXT))

andalso typecheck (TT) in (CONTEXT:=(!SAVECONTEXT)::(tl(!CONTEXT));CHECK)

end

) end then saypause "Dependency or sort check failure"

else (

let val newparentcontext = addtoworld0 (hd(tl(!CONTEXT)))

(0,AbstArg(s,0),(Reset();

Reindex3(AType(renamespace(addtoworld0 (worldof L)

(0,EntArg Deferred,typesubs (EntArg Unknown) (EntArg Unknown) (EType T))))))) in

(CONTEXT:= (hd(!CONTEXT))::newparentcontext::(tl(tl(!CONTEXT)));showdec s) end)

) end;

(*

The user command postulate which declares primitive notions and axioms.
“in postulate, the user supplies as an argument list all notions in the next

move on which the construction depends, in order of construction. We do a
dynamic maneuver: replace the next move with the part of the next move
indicated by the argument list; declaration check this move using the resulting
context (checking that it includes all its own needed dependencies) and sort
check the object sort argument in this context; then restore the context.”

103

If there is no argument list, we are in effect declaring an object constant at
the last move instead of the next move.

*)

(* USER COMMAND *)

fun Define s L T = (FULLREWRITES:=nil;

if hd(!REWRITES) <> nil then saypause "Define command blocked by hypothetical rewrites" else

if not(testall isvariable L) then saypause "Some argument is not variable"

(* same remark on the argument order test as above *)

else if not (isordered L) then saypause "Arguments are in the wrong order"

else

let val T0 = T and T = dotfix2 (deworld(worldof L)) T in

if reserved s orelse extended s orelse stringtype s <> nil

then saypause ("Identifier "^s^" is not fresh")

else if not let val T2 = ((entsubs (EntArg Unknown) (EntArg Unknown) T))

and THETYPE = dotfix (deworld(worldof L))

(etypesubs (EntArg Unknown) (EntArg Unknown) (entitytype T0)) in (

SAVECONTEXT:=(hd(!CONTEXT));

CONTEXT:= (worldof (* worldof2 *) L)::(tl(!CONTEXT));

let val CHECK = deccheck4 (!CONTEXT) (hd(!CONTEXT)) andalso

deccheck1 (!CONTEXT) THETYPE andalso deccheck2 (!CONTEXT) T2

in (CONTEXT:=(!SAVECONTEXT)::(tl(!CONTEXT));CHECK)

end

) end then saypause "Sort check or dependency failure"

else let val TT = fullrewrite(entsubs (EntArg Unknown) (EntArg Unknown) (T))

and THETYPE = dotfix(deworld(worldof L))

(etypesubs (EntArg Unknown) (EntArg Unknown) (entitytype (T0))) in (

let val newparentcontext = addtoworld0 (hd(tl(!CONTEXT)))

(0,AbstArg(s,0),(Reset();Reindex3(

AType(renamespace(addtoworld0 (worldof L) (0,EntArg TT,EType (THETYPE))))))) in

104

(CONTEXT:= (hd(!CONTEXT))::newparentcontext::(tl(tl(!CONTEXT)));showdec s)

end)

end end);

(*

The user command define which declares defined notions. The body of
the definition is rewritten aggressively using fullrewrite (the only place this
function is used, so far); notice that the table of remembered rewrites is cleared
when the command starts. The overall structure of the execution of this com-
mand is very similar to that of postulate: the arguments are different, in that
the last one is an object term. There is no object sort argument (as there is in
Automath), since the sort of the term can after all be computed from the term.

*)

(* postulate a function witnessing validity of a rewrite rule *)

(* USER COMMAND *)

fun rewritep s L =

(clearallcaches();

if not(!REWRITEVER)

then saypause "Rewriting is turned off" else

(* if length(!CONTEXT) <> 2 then saypause "Hypothetical rewrite declarations not supported"

else *)

if hd(!REWRITES) <> nil then saypause "Rewrite construction blocked by hypothetical rewrites" else

if reserved s (* orelse extended s *) orelse stringtype s <> nil

then saypause ("Identifier "^s^" is not fresh")

else

let val V = extendenough (extend s) (!CONTEXT) in (*A*)

if not (goodrewritelist L)

then saypause "Proposed rewrite list does not sort check"

105

else let val [Q,R] = lasttwo L and L1 = allbutlasttwo L in (*B*)

let val P = AbstArg(extendenough (extend V) (!CONTEXT),0) in (*C*)

(* set type of P to (AType(World([(~1,EntArg(Ent("???",1)),T),

(~1,EntArg(Unknown),EType prop)])) where T is argtype Q *)

((*E*)

let val T = argtype Q in (*D*)

let val newvariablecontext = addtoworld0 (hd((!CONTEXT)))

(newserial(),P,(Reset();

Reindex3((AType(World([(~1,EntArg(Ent(

extendenough (extend (extendenough (extend V) (!CONTEXT))) (!CONTEXT)

,1)),T),

(~1,EntArg(Unknown),EType prop)])))))) in (*Q*)

(CONTEXT:= newvariablecontext::(tl((!CONTEXT)));showdec (deabst P)) end (*Q*)end (*D*)

;

Declare (V) (EType(that (App(deabst P,0,[Q]))));

postulate s (L1 @ [P,EntArg(Ent(V,0))]) (that (App(deabst P,0,[R])));

let val T = stringtype s in (*F*) if T = nil

then saypause ("construction of "^s^" failed for some reason")

else let val (L1::L2::L3) = (!REWRITES) in(*G*)

REWRITES:= (L1::((s,(Negindex4((deent(hd(getpattern (deworld2(pi1(hd T))))))),

(Negindex4(deent(hd(gettarget (deworld2(pi1(hd T))))))))) :: L2)::L3)

end (*G*)

end (*F*)) (*E*)

end (*C*) end (*B*) end (*A*));

(* show that the function named by s

witnesses the validity of proposed rewrite rule *)

(* USER COMMAND *)

val OLDCONTEXT = ref(!CONTEXT);

val OLDREWRITES = ref(!REWRITES);

fun Rewrited s L =

106

(clearallcaches();

if not(!REWRITEVER) then say "Rewriting is turned off" else

(* if length(!CONTEXT) <> 2 then saypause "Hypothetical rewrite declarations not supported"

else *)

if hd(!REWRITES)<>nil then saypause "Rewrite definition blocked by hypothetical rewrites" else

if stringtype s = nil

then saypause ("Evidence function "^s^" is not declared")

else

let val S = extendenough (extend s) (!CONTEXT) in

(OLDCONTEXT:= (!CONTEXT);

rewritep S L;

if stringtype S <> nil andalso

equaltypes false (pi1(hd(stringtype s)))(pi1(hd(stringtype S)))

then say "Rewrite demonstration succeeded"

else (CONTEXT:=(!OLDCONTEXT);REWRITES:=(!OLDREWRITES);saypause "Rewrite demonstration failed")

)

end);

(*

The rewritep and rewrited commands justify and create rewrite rules.
The rewritep declares a new function of a correct sort to justify a rewrite rule
and installs the rewrite rule; the rewrited command has as its first argument
an already declared identifier of a correct sort to justify a rewrite rule, and
introduces the desired rewrite rule. If a rewrited command is repeated, this
moves the relevant rewrite rule into the position in the list where it will be
applied first. In general, the most recently declared rewrite rule in the most
recent move is applied. Rewrite rules associated with the next move are kept,
but are not active.

The rewrited command needs to be tested.
In general terms, the rewrite feature arguably makes Lestrade a program-

ming language.

107

*)

(* parser *)

(* this was originally Polish notation with a following comma to signal that

a function appears as an argument;

it was then upgraded to suppport use of

functions of arity greater than 1

as infix or mixfix operators, and commas

are allowed between any arguments, and mandatory before and after

function identifier arguments

to avoid confusion with functions in applied or infix/mixfix position.

10/10 functions applied to shortened argument lists represent functions

(currying);

argument lists must be explicitly enclosed in parentheses for this to be

understood.

10/15 user entered lambda terms as arguments are supported.

*)

fun islower c = #"a" <= c andalso c <= #"z";

fun isupper c = #"A" <= c andalso c <= #"Z";

fun isnumeral c = (#"0" <= c andalso c <= #"9") orelse c= #"’";

fun isspecial c = c= #"~"

orelse c = #"@" orelse c = #"#" orelse c = #"$"

orelse c = #"%" orelse c = #"^" orelse c = #"&"

orelse c = #"*" orelse c = #"-" orelse c = #"+"

orelse c = #"=" orelse c = #"|" orelse c = #";" orelse c = #"." orelse c = #"<"

orelse c = #">" orelse c = #"?" orelse c = #"/"

orelse c = #"!" orelse c = #".";

(*

Classes of character of interest in Lestrade. The single quote is counted as
a numeral for technical reasons having to do with generating new alphanumeric
identifiers.

108

*)

(* get first identifier from a list of characters *)

fun getident nil = nil |

getident (#"\"" :: L) = L |

getident [c] = if islower c orelse isupper c orelse isnumeral c

orelse isspecial c orelse c = #"," orelse c= #":"

orelse c = #"(" orelse c = #")" orelse c= #"[" orelse c= #"]" then [c] else nil |

(* I could fiddle with allowed shapes of identifiers here *)

getident (a::(b::L)) =

if a = #"," orelse a = #":" orelse a = #"(" orelse a = #")" orelse a = #"[" orelse a = #"]" then [a] else

if a = #" " orelse a= #"\n" orelse a= #"\\" then getident (b::L)

else if isupper a

then if islower b orelse isnumeral b

then a::(getident(b::L))

else [a]

else if islower a

then if islower b orelse isnumeral b

then a::(getident(b::L))

else [a]

else if isnumeral a

then if isnumeral b

then a::(getident(b::L))

else [a]

else if isspecial a

then if isspecial b

109

then a::(getident(b::L))

else [a]

else nil;

(* the rest of the stream of characters after the first identifier is read *)

fun restident nil = nil |

restident (#"\"" :: L) = nil |

restident [c] = nil |

restident (a::(b::L)) =

if a = #"," orelse a = #":" orelse a = #")" orelse a = #"(" orelse a= #"[" orelse a= #"]" then b::L else

if a = #" " orelse a= #"\n" orelse a= #"\\" then restident (b::L)

else if isupper a

then if islower b orelse isnumeral b

then restident(b::L)

else (b::L)

else if islower a

then if islower b orelse isnumeral b

then restident (b::L)

else (b::L)

else if isnumeral a

then if isnumeral b

then restident(b::L)

else b::L

else if isspecial a

110

then if isspecial b

then restident(b::L)

else b::L

else nil;

(* utility for tokenization *)

fun testidentlist nil = nil |

testidentlist (#">":: #">"::L) = ">> "::[implode L] |

testidentlist L = (implode(getident(L))::(testidentlist (restident L)));

(* get a list of tokens (identifiers and punctuation) from a string *)

fun tokenize s = testidentlist(explode s);

(*

The block of functions above comprises the tokenization feature of Lestrade.
getident picks out the next identifier or punctuation mark from a stream of
characters; restident returns the rest of the stream of characters after the
first identifier or punctuation mark is read. Commas, colons, parentheses, and
brackets are punctuation. Spaces, returns, and backslashes are discarded. An
identifier is either a string of special characters or a string of nonempty length
consisting of zero or one upper case character followed by zero or more lower case
letters followed by zero or more numerals (including single quote as a numeral).

*)

(* repair an application term with missing arguments into a

lambda-term 10/10 mods *)

(* convert sort of a primitive construction into a lambda term *)

fun lambdaform s L = (* if pi23 (hd(rev L)) = EntArg Unknown

then *) rev((pi13(hd(rev L)),

EntArg(App(s,0,map pi23 (rev(tl(rev L))))),pi33(hd(rev L)))::(tl(rev L))) (* else L *);

(*

111

This function will convert the declaration list in the sort of a primitive
construction into the declaration list in an internal representation of a λ-term
for that construction. No such conversion is needed for defined notions.

*)

(* construct correct argument list for a curried function argument *)

fun FixListType final L T1 =

if T1 = nil then nil else

if length T1 = length L + 1 then [(pi13(hd (rev T1)),

if final then EntArg(defmatchcomp0 true T1 L)

else pi23(hd(rev T1)), typematchcomp1 T1 L)]

else let val LL = FixListType false L (rev(tl(rev T1))) in

LL @ (FixListType final (L@LL) T1) end;

(* transform an argument which has explicitly closed argument

list into a curried function if appropriate 10/10 mods *)

fun FixApp(EntArg(App(a,0,L))) =

let val T1 = stringtype a in

if length L >= length(deworld(getabstype(pi1(hd(T1)))))-1

then EntArg(App(a,0,L))

(* else if stringAge a <> [0] then

(saypause "Cannot curry a primitive construction";EntArg Error) *)

else Lambda (renamespace(World(FixListType true

(map (fn m =>(0,m,argtype m)) L)

(lambdaform a(deworld(getabstype(pi1(hd(T1))))))))) end |

FixApp t = t;

(*

These two functions compute the representation of the function represented
by an application term with too few arguments (a curried function argument).

112

*)

(* get a non-infix term from a list of tokens *)

fun getterm nil = EntArg Error |

getterm (a::L) =

if reserved a then EntArg Error else

if a = "[" then let val BODY = getlambdalist L in

if BODY = nil then EntArg Error

else (Lambda (renamespace (World BODY))) end else

if a = "(" then let val TERM = getterms L and REST = restterms L in

if REST<>nil andalso hd REST = ")" then TERM else EntArg Error

end

else if a = "," then getterm L else

let val T1 = stringtype a in

if T1 = nil then EntArg Error

else if isenttype (pi1(hd T1)) then EntArg(Ent(a,0))

else if length(dotpurge(deworld(getabstype(pi1(hd(T1)))))) = 1

then EntArg(App(a,0,nil))

else if L = nil orelse hd L = "," orelse hd L = ":"

orelse hd L = ")" orelse reserved (hd L) then AbstArg(a,0)

else if length(dotpurge(deworld(getabstype(pi1(hd T1))))) = 2

then EntArg(App(a,0,

guardedfixarglist (deworld(getabstype(pi1(hd T1))))[getterm L]))

(* adding possibility of application terms with missing

arguments representing functions 10/10 mods -- argument

list enclosed by parentheses can be of variable length *)

113

else if hd L = "(" then let val TERM =

guardedfixarglist (deworld(getabstype(pi1(hd T1))))

(getopenarglist (tl L))

and REST =

restopenarglist (tl L)

in if REST <> nil andalso hd REST = ")"

then FixApp(EntArg(App(a,0,TERM))) else EntArg Error end

else EntArg(App(a,0,guardedfixarglist (deworld(getabstype(pi1(hd T1))))

(getarglist (length(dotpurge(deworld(getabstype(pi1(hd(T1))))))-1) (L))))

end

(* the rest of the list of tokens after the first non-infix term is read *)

and restterm nil = nil |

restterm (a::L) =

if reserved a then (a::L) else

if a = "[" then let val BODY = getlambdalist L in

if BODY = nil then (a::L)

else restlambdalist L end else

if a = "(" then let val REST = restterms L in

if REST <> nil andalso hd REST = ")" then tl REST else nil

end

else if a = "," then restterm L else

let val T1 = stringtype a in

if T1 = nil then a::L

else if isenttype (pi1(hd T1)) then L

else if length(dotpurge(deworld(getabstype(pi1(hd(T1)))))) = 1

then L

114

else if L = nil then nil

else if hd L = "," then L

else if reserved(hd L) then L

else if length(dotpurge(deworld(getabstype(pi1(hd T1))))) = 2

then restterm L

else if hd L = "(" then let val REST =

restarglist (length(dotpurge(

deworld(getabstype(pi1(hd(T1))))))-1) (tl L)

in if REST <> nil andalso hd REST = ")" then tl REST else nil end

else restarglist (length(dotpurge(deworld(getabstype(pi1(hd(T1))))))-1) (L)

end

(*

getterm gets the first non-infix term from a stream of tokens; restterm

returns the rest of the stream of tokens.
The alternatives are a λ-term (starting with a bracket), a parenthesized

term, an object or function atomic constant, or an application term (an atomic
constant applied to an argument list) or a curried function term (an atomic
constant applied to “too few arguments”).

Notice that the parser calls guardedfixarglist to attempt to fill in implicit
arguments.

*)

(* get an infix term from a stream of tokens *)

and getterms L =

if L = nil orelse reserved(hd L) then EntArg Error else

let val TERM = getterm L and REST = restterm L in

if REST = nil orelse hd REST = "," orelse hd REST = ")"

orelse hd REST = "(" orelse hd REST = ":" orelse reserved (hd REST) then TERM

115

else let val T1 = stringtype (hd REST)

in if T1=nil orelse isenttype (pi1(hd T1)) then TERM

else if length(dotpurge(deworld(getabstype(pi1(hd(T1)))))) <=2 then TERM

else if tl REST = nil orelse hd(tl REST) = ","

orelse hd(tl REST) = ":" orelse hd(tl REST) = ")"

orelse reserved(hd(tl(REST))) then TERM

else EntArg(App(hd REST,0,guardedfixarglist

(deworld(getabstype(pi1(hd T1))))((TERM)::

(getarglist

(length(dotpurge(deworld(getabstype(pi1(hd(T1))))))-2) (tl REST)))))

end end

(* the rest of the stream of tokens after the first infix term is read *)

and restterms L =

if L = nil orelse reserved(hd L) then L else

let val REST = restterm L in

if REST = nil orelse hd REST = "," orelse hd REST = ")"

orelse hd REST = "(" orelse hd REST = ":" orelse reserved (hd REST) then REST

else let val T1 = stringtype (hd REST)

in if T1=nil orelse isenttype (pi1(hd T1)) then REST

else if length(dotpurge(deworld(getabstype((pi1(hd(T1))))))) <=2 then REST

else if tl REST = nil orelse hd(tl REST) = ","

orelse hd(tl REST) = ":" orelse hd(tl REST) = ")"

orelse reserved(hd(tl REST)) then REST

else restarglist (length(dotpurge(deworld(getabstype(pi1(hd(T1))))))-2) (tl REST)

end end

(*

116

The function getterms reads the longest possible infix term from a stream
of tokens, and restterms returns what is left of the stream. There are similar
observations to be made about the responsibility of the parser to fill in implicit
arguments.

*)

(* a list of arguments of known length,

without enclosing parentheses (these are handled by getterm *)

and getarglist 0 L = nil |

getarglist n nil = [EntArg Error] |

getarglist n L = (getterms L)::(getarglist (n-1) (restterms L))

(* what is left after reading a list of arguments

of known length without enclosing parentheses *)

and restarglist 0 L = L |

restarglist n nil = nil |

restarglist n L = restarglist (n-1) (restterms L)

(* get a list of arguments of unknown length

(as in an function declaration or (10/10) a prefix term with

explicit argument list) *)

and getopenarglist nil = nil |

getopenarglist ((":")::L) = nil |

getopenarglist ((")")::L) = nil |

getopenarglist L =

if restterms L = L then nil else

(getterms L)::(getopenarglist(restterms L))

(* what is left after reading a list of arguments of unknown length *)

and restopenarglist nil = nil |

117

restopenarglist ((":")::L) = L |

restopenarglist ((")")::L) = (")"::L) |

restopenarglist L =

if restterm L = L then L else

restopenarglist(restterms L)

(*

These functions read argument lists from a stream of tokens (and companion
functions return the rest of the stream of tokens). getarglist reads argument
lists of known length (where the arity of a function is known); getopenarglist
reads argument lists of unknown length, as in function declarations or curried
function argument expressions.

*)

and guardedgetterms L = if despace1(restterms L) = nil

(* orelse hd(restterms L) = "]"

andalso despace1(tl(restterms L)) = nil *) then getterms L

else (saypause "Term not completely read";EntArg Error)

(*

This guarded version of getterms will return an error term if it does not
exhaust the stream of tokens. This is used to detect dangling extra arguments
in command lines.

*)

and getlambdalist L =

if L = nil then nil

else let val T1 = stringdef (hd L)[(hd(!CONTEXT))] in

if T1 = nil orelse stringage(hd L)[hd(!CONTEXT)] = [0] then nil

118

else if isenttype(pi1(hd T1)) andalso (tl L) <> nil

andalso hd(tl L) = ","

then (1,EntArg(Ent(hd L,0)),pi1(hd T1))::(getlambdalist (tl(tl L)))

else if (tl L) <> nil andalso hd(tl(L)) = ","

then (1,AbstArg(hd L,0),pi1(hd T1))::(getlambdalist (tl(tl L)))

else let val TERM = getterms ((tl(tl L)))

and REST = restterms ((tl(tl L))) in

if isenttype(pi1(hd T1)) andalso (tl L) <> nil

andalso hd(tl L) = "=>" andalso (tl(tl L)) <> nil

andalso TERM <> EntArg Error andalso

REST <> nil andalso

hd(REST) = "]"

then [(1,EntArg(Ent(hd L,0)),pi1(hd T1)),

(1,TERM,argtype (TERM))]

else if (tl L) <> nil andalso hd(tl L) = "=>"

andalso (tl(tl L)) <> nil

andalso TERM <> EntArg Error andalso

REST <> nil andalso

hd(REST) = "]"

then [(1,AbstArg(hd L,0),pi1(hd T1)),

(1,TERM,argtype (TERM))]

else nil

end end

and restlambdalist L =

if L = nil then L

else let val T1 = stringdef (hd L)[(hd(!CONTEXT))] in

if T1 = nil orelse stringage(hd L)[hd(!CONTEXT)] = [0] then L

else if isenttype(pi1(hd T1)) andalso (tl L) <> nil

andalso hd(tl L) = "," then restlambdalist (tl(tl L))

else if (tl L) <> nil andalso hd(tl(L)) = "," then restlambdalist (tl(tl L))

else let val TERM = getterms ((tl(tl L)))

and REST = restterms ((tl(tl L))) in

119

if isenttype(pi1(hd T1)) andalso (tl L) <> nil

andalso hd(tl L) = "=>" andalso (tl(tl L)) <> nil

andalso TERM <> EntArg Error andalso

REST <> nil andalso

hd(REST) = "]" then tl(REST)

else if (tl L) <> nil andalso hd(tl L) = "=>"

andalso (tl(tl L)) <> nil andalso getterms ((tl(tl L))) <> EntArg Error andalso

REST <> nil andalso

hd(REST) = "]" then tl(REST)

else L

end end

(*

These functions parse the innards of λ-terms.

*)

;

fun readenttype nil = error |

readenttype (a::L) = if a = "obj" then obj

else if a="prop" then prop

else if a="that" then let val P = deent(getterms L) in

if P = Error then error else

that P end

else if a="type" then TYPE

else if a="in" then let val P = deent(getterms L)in

if P = Error then error else

IN P end else error;

fun restenttype nil = nil |

120

restenttype (a::L) = if a = "obj" then L

else if a="prop" then L

else if a="that" then let val P = deent(getterms L) in

if P = Error then (a::L) else

restterms L end

else if a="type" then L

else if a="in" then let val P = deent(getterms L) in

if P = Error then (a::L) else

restterms L end else (a::L);

fun getlambdalist2 L =

if L = nil then nil

else let val T1 = stringdef (hd L)[(hd(!CONTEXT))] in

if T1 = nil orelse stringage(hd L)[hd(!CONTEXT)] = [0] then nil

else if isenttype(pi1(hd T1)) andalso (tl L) <> nil

andalso hd(tl L) = ","

then (1,EntArg(Ent(hd L,0)),pi1(hd T1))::(getlambdalist2 (tl(tl L)))

else if (tl L) <> nil andalso hd(tl(L)) = ","

then (1,AbstArg(hd L,0),pi1(hd T1))::(getlambdalist2 (tl(tl L)))

else if isenttype(pi1(hd T1)) andalso (tl L) <> nil

andalso hd(tl L) = "=>" andalso (tl(tl L)) <> nil

andalso readenttype ((tl(tl L))) <> error andalso

typecheck(readenttype (tl(tl L))) andalso

restenttype (tl(tl L)) <> nil andalso

hd(restenttype ((tl(tl L)))) = "]"

then [(1,EntArg(Ent(hd L,0)),pi1(hd T1)),

(1,EntArg Unknown,EType(readenttype(tl(tl L))))]

else if (tl L) <> nil andalso hd(tl L) = "=>"

andalso (tl(tl L)) <> nil

andalso readenttype ((tl(tl L))) <> error andalso

121

typecheck(readenttype (tl(tl L))) andalso

restenttype (tl(tl L)) <> nil andalso

hd(restenttype ((tl(tl L)))) = "]"

then [(1,AbstArg(hd L,0),pi1(hd T1)),

(1,EntArg Unknown,EType(readenttype (tl(tl L))))]

else nil

end

and restlambdalist2 L =

if L = nil then L

else let val T1 = stringdef (hd L)[(hd(!CONTEXT))] in

if T1 = nil orelse stringage(hd L)[hd(!CONTEXT)] = [0] then L

else if isenttype(pi1(hd T1)) andalso (tl L) <> nil

andalso hd(tl L) = "," then restlambdalist2 (tl(tl L))

else if (tl L) <> nil andalso hd(tl(L)) = "," then restlambdalist2 (tl(tl L))

else if isenttype(pi1(hd T1)) andalso (tl L) <> nil

andalso hd(tl L) = "=>" andalso (tl(tl L)) <> nil

andalso readenttype ((tl(tl L))) <> error andalso

restenttype((tl(tl L))) <> nil andalso

typecheck(readenttype (tl(tl L))) andalso

hd(restenttype ((tl(tl L)))) = "]" then tl(restenttype ((tl(tl L))))

else if (tl L) <> nil andalso hd(tl L) = "=>"

andalso (tl(tl L)) <> nil andalso readenttype ((tl(tl L))) <> error andalso

typecheck(readenttype (tl(tl L))) andalso

restenttype((tl(tl L))) <> nil andalso

hd(restenttype ((tl(tl L)))) = "]" then tl(restenttype(tl(tl L)))

else L

end;

fun readabstype L =

if L<>nil andalso hd L = "[" then

let val LL = getlambdalist2 (tl L) in

if LL=nil then EType error else (AType (renamespace(World (LL)))) end

else EType error;

122

fun restabstype L = if L<>nil andalso hd L = "[" then restlambdalist2 (tl L) else L;

fun readtype L = if despace1(resttype L) <> nil then (saypause "Term not completely read"; EType error)

else let val ET = readenttype L in if ET = error

then readabstype L

else EType (ET) end

and resttype L = if readenttype L = error

then restabstype L

else restenttype L;

(*

readenttype parses object sorts (with its partner restenttype keeping
track of tails of lists.

getlambdalist2 reads the innards of function sort terms (with the aid of a
partner function keeping track of tails).

readabstype parses function sorts, and readtype parses general types, each
with a partner function.

Function sort terms consist of a bracket followed by a comma separated list
of variables from the next move followed by => followed by an object sort term
followed by a close bracket.

The new device for parsing λ-terms has now been adapted to parse function
sorts; I have extended the declare command to allow declaration of function
variables. This does obscure some philosophical points (as λ-term arguments
do as well).

We have now arrived at the end of the parser source. It is useful to note
that the display language is different from the parsed language: anonymous
function terms and function sort terms have their bound variables without type
labels (with types read from the next move) and the body of a function sort
term is simply an object sort term. We do not intend to support typing of
bound variables by explicit labelling (nor do we intend to support parsing of
subscripted variables), and we do not intend to implement any sort of type
inference.

*)

123

(* the command line just read *)

val THELINE = ref "";

val THELINE2 = ref "";

(* the file from which commands are being read, used by readfile

in indented and unindented versions *)

val READFILE = ref (TextIO.openIn("default"));

val LOGNAME = ref "";

val LOGNAME2 = ref "";

fun Hd nil = "" |

Hd x = hd x;

fun Tl nil = nil |

Tl x = tl x;

(*

Here are some items useful for the command line reading commands below.
THELINE is the command line just read. THELINE2 no doubt has a related

use.
READFILE is a file from which command lines are being read.
LOGNAME(2) is the name of some log file.
Hd and Tl are guarded head and tail command for use with lists of strings.

*)

(* test functions -- two of them are user commands *)

fun sarg s = getterms(tokenize s);

fun sent s = deent(sarg s);

fun stype s = readtype(tokenize s);

fun sType s = (stype s);

fun slist s = getopenarglist (tokenize s);

124

fun slist2 n s = getarglist n(tokenize s);

(* USER COMMAND *)

fun Sent s = (say (display2(sent s)); say (display1(entitytype(sent s))));

(* USER COMMAND *)

fun Stype s = (say (display6(stype s)));

fun Moretypes s = say (display5(World(map (fn (x,y) => (1,x,y))

(moretypes (argtype(getterm (tokenize s)))))));

fun Expandlist s = say(display5(World(expandlist (map (fn x => (1,x,argtype x))

(getopenarglist(tokenize s))))));

fun Fixarglist s t = say(display5(World(map (fn x => (1,x,argtype x))(fixarglist

(deworld(getabstype(pi1(hd(stringtype s)))))

((getopenarglist (tokenize t)))

))));

(*

Functions used for diagnostics during debugging which I will not comment
on.

*)

val READFILEDEPTH = ref 0;

(* read a command line from a stream of tokens *)

val THEORYNAME = ref "bogus";

val BACKUPINDEX = ref 0;

fun readline nil = () |

readline (a::L) =

125

if a = "setmarginup" then MARGIN := (!INDENTWIDTH)+(!MARGIN)

else if a = "setmargindown" then if (!MARGIN)>(!INDENTWIDTH) then MARGIN:=(!MARGIN)-(!INDENTWIDTH) else ()

(*

increase or decrease the margin by five.

*)

else if a = "readfile" andalso length(L)>=2

then (Flush();closelog();READFILEDEPTH:=1+(!READFILEDEPTH);readfile (hd L) (hd(tl L)))

else if a = "readfile" andalso length(L) = 1

then (Flush();closelog();READFILEDEPTH:=1+(!READFILEDEPTH);readfile (hd L) "scratch")

else if a = "readback" andalso length(L) = 1

then (Flush();closelog();READFILEDEPTH:=1+(!READFILEDEPTH);readfile (hd L) ("backups\\"^(hd L)^"_"^(makestring(!BACKUPINDEX)));BACKUPINDEX:=(!BACKUPINDEX)+1; Flush(); closelog(); READFILEDEPTH:=1+(!READFILEDEPTH); readfile "scratch" (hd L); Flush(); closelog(); readfile (hd L) "scratch")

else if a = "readbook" andalso length(L)>=2

then (Flush();closelog();READFILEDEPTH:=1+(!READFILEDEPTH);readfile2 (hd L) (hd(tl L)))

else if a = "readbook" andalso length(L) = 1

then (Flush();closelog();READFILEDEPTH:=1+(!READFILEDEPTH);readfile2 (hd L) "scratchtex")

else if a = "readkoob" andalso length(L) = 1

then (Flush();closelog();READFILEDEPTH:=1+(!READFILEDEPTH);readfile2 (hd L) ("backups\\"^(hd L)^"_"^(makestring(!BACKUPINDEX))); BACKUPINDEX:= (!BACKUPINDEX)+1; Flush(); closelog();READFILEDEPTH:=1+(!READFILEDEPTH); readfile2 "scratchtex" (hd L);Flush(); closelog();readfile2 (hd L) "scratchtex")

(*

The commands readfile and readbook can be invoked in the interface, but
should not be invoked in log files.

readback and readkoob are new 10/16/17, read the default file back into
the named file.

readbook and readkoob replace readfile2 and readback2 in older versions.

*)

else if a = "parsetest" andalso L<>nil then Sent (hd L)

else if a = "parsetest2" andalso L<> nil then Stype(hd L)

126

(*

These commands will parse an argument (starting with a double quote) as
an object term or as an object type, respectively.

*)

else if a = "declare" andalso L<> nil andalso tl L<>nil

then let val s = (hd L) and t = readtype (tl L) in

(if resttype (tl L)<> nil andalso resttype (tl L)<> [""]

then saypause ("Declaration line not completely read: "^(hd L)) else ();

say2(!THELINE);

say0("Your command: "^(!THELINE2)); Declare s t) end

else if a = "goal" andalso L<> nil

then let val t = readtype L in

(if resttype (L)<> nil andalso resttype (L)<> [""]

then saypause ("Declaration line not completely read") else ();

say2(!THELINE);

say0("Your command: "^(!THELINE2)); say1("Goal: "^(display6 t)^"\n")) end

else if a = "test" andalso L<> nil

then let val t = (guardedgetterms L) in

(if restterms (L)<> nil andalso restterms (L)<> [""]

then saypause ("Declaration line not completely read") else ();

say2(!THELINE);

say0("Your command: "^(!THELINE2)); say1("Test: "^(display4 t)^"\n");say1(display6(argtype t)^"\n\n")) end

(*

The declare user command: declare an identifier (first argument) with a
given object sort (second argument) at the next move.

The goal command parses an entity type and displays it. Its intended index
use is actually to make notes of goals in structured proofs.

The test command parses an argument term and displays it with its type.
Since the goal command gives me this ability for entity types, I thought I would
like to have it for terms as well. Note that test will handle anything which
occurs as an argument, which includes certain terms representing constructions.

127

Like goal, its main use in log files is to generate comments. It is very handy in
the interface for building the next command!

*)

else if a = "postulate" andalso L<>nil andalso tl L <> nil

then let val s = hd L and L1 = getopenarglist (tl L)

and T = readenttype (restopenarglist(tl L))

in (if restenttype (restopenarglist(tl L))<> nil

andalso restenttype (restopenarglist(tl L))<> [""]

then saypause ("construction line not completely read: "

^(hd (restenttype (restopenarglist(tl L))))) else ();

say2(!THELINE);

say0("Your command: "^(!THELINE2));postulate s L1 T) end

else if a = "ddefine" andalso L<>nil andalso tl L <> nil

then let val s = hd L and L1 = getopenarglist (tl L)

and T = readenttype (restopenarglist(tl L))

in (if restenttype (restopenarglist(tl L))<> nil

andalso restenttype (restopenarglist(tl L))<> [""]

then saypause ("construction line not completely read: "

^(hd (restenttype (restopenarglist(tl L))))) else ();

say2(!THELINE);

say0("Your command: "^(!THELINE2));ddefine s L1 T) end

(*

The postulate user command: declare an identifier (first argument) applied
to a list of arguments (subsequent arguments) with output a given object sort:
the resulting function (or object if the argument list is null) is declared at the
last move.

*)

else if a = "define" andalso L<>nil andalso tl L<>nil

then let val s = hd L and L1 = getopenarglist (tl L)

and T = deent(guardedgetterms(restopenarglist(tl L)))

in if T = Unknown then

saypause "Sorry, cannot define something as a function" else

128

(if restterms(restopenarglist(tl L)) <> nil

andalso restterms(restopenarglist(tl L)) <> [""]

then saypause ("Definition line not completely read: "^(hd(restopenarglist(tl L))))else ();

say2(!THELINE);say0("Your command: "^(!THELINE));Define s L1 T) end

(*

The define user command: declare an identifier (first argument) applied
to a list of arguments (subsequent arguments) with output a given object term
(the definition body): the resulting function (or object if the argument list is
null) is declared at the last move.

*)

else if a = "rewritep" andalso L <> nil andalso tl L <> nil

then let val s = hd L and L1 = getopenarglist (tl L)

(* and V = Hd(restopenarglist(tl L)) *) in

(if (Tl(restopenarglist(tl L))) <> nil

andalso (restopenarglist(tl L)) <> [""]

then saypause ("Rewrite construction line not completely read: "

^(hd(restterms(restopenarglist(tl L)))))else ();say2(!THELINE);

say0("Your command: "^(!THELINE));rewritep s L1 (* V *)) end

else if a = "rewrited" andalso L <> nil andalso tl L <> nil

then let val s = hd L and L1 = getopenarglist (tl L)

(* and V = Hd(restopenarglist(tl L)) *) in

(if (Tl(restopenarglist(tl L))) <> nil

andalso (restopenarglist(tl L)) <> [""]

then saypause ("Rewrite demonstration line not completely read: "

^(hd(restopenarglist(tl L))))else ();say2(!THELINE);

say0("Your command: "^(!THELINE));Rewrited s L1 (* V *)) end

(*

The rewritep and rewrited user commands: postulate or exhibit as already
defined a function which justifies a rewrite rule, and record the rewrite rule.

*)

else if a = "open" then (say2(!THELINE);

129

say0 ("Your command: "^(!THELINE)^"\n");

Open(if L=nil orelse hd L = "" then makestring(length(!CONTEXT)) else hd L))

(*

open opens a new move: it will have the default numeral name if it has no
argument.

*)

else if a = "close" then (say2(!THELINE)

;say0("Your command: "^(!THELINE)^"\n");Close())

(*

close closes the next move, unless it is move 1.

*)

else if a = "save" then (say2(!THELINE)

;say0 ("Your command: "^(!THELINE)^"\n"); Save(if L=nil orelse hd L = "" then

hd(!WORLDNAMES) else hd L))

(*

save saves the next move with the name given as argument or the default
numeral name if no argument is given.

*)

else if a = "load" then (say2(!THELINE)

;say0 ("Your command: "^(!THELINE)^"\n"); LoadTheory(if L=nil orelse hd L = "" then

"" else hd L))

else if a = "import" then (say2(!THELINE)

;say0 ("Your command: "^(!THELINE)^"\n"); ImportTheory(if L=nil orelse hd L = "" then

"" else hd L))

(*

130

These commands restore saved theories (move 0 declarations plus some in-
dices. load clears the environment and makes the saved theory the entire con-
text; import makes move 0 of the saved theory a new move 1.

*)

else if a = "versiondate" then versiondate()

(*

Report the current version.

*)

else if a = "showall" then showall()

(*

Show all declarations. The output will be huge.

*)

else if a = "showimplicit" then (showimplicit();say2(!THELINE))

else if a = "hideimplicit" then (hideimplicit();say2(!THELINE))

else if a = "typesonly" then (typesonly();say2(!THELINE))

else if a = "showdefs" then (showdefs();say2(!THELINE))

(*

Show or hide implicit arguments. Show or hide definition bodies.

*)

131

else if a = "displayrewrites" then displayrewrites()

(*

Show all active rewrite rules.

*)

else if a = "showrecent" then showrecent()

(*

Display the declarations in the next move and the last move.

*)

else if a = "showdec" andalso L<>nil then (showdec (hd L))

(*

Display the declaration of a single identifier, the argument.

*)

else if a = "showdecs" then showdecs()

else if a ="compactdisplay" then compactdisplay()

else if a = "supercompactdisplay" then supercompactdisplay()

(*

Show all declarations in the next move and last move, one by one, waiting
until the user hits enter (or q to break out).

compactdisplay turns on or off display of definition bodies at positive
moves.

supercompactdisplay turns on or off display of any type information feed-
back from a command line.

132

*)

else if a = "foropen" then say ("\n\n"^(savedforopen()))

else if a = "forclearcurrent" then say ("\n\n"^(savedforclearcurrent()))

(*

Display the names of saved environments which could be opened with the
indicated command.

*)

else if a="comment" orelse a="%"

then (TextIO.output(!LOGFILE,!THELINE^"\n");say0((!THELINE^"\n")))

else if a="comment1" orelse a="%%"

then (TextIO.output(!LOGFILE,!THELINE);say0((!THELINE)))

else if a =">> " then ()

(*

Comments. comment or % is the last line of a comment (followed by a return).
comment1 or %% is a non-last line of a comment.
The two flavors of comment line above persist when the log file is run: the

>> comment is transitory.

*)

else if a = "clearcurrent" then

(ClearCurrent(if L = nil orelse hd L = "" then makestring(length(!CONTEXT)-1)

else hd L);

TextIO.output(!LOGFILE,!THELINE^"\n"))

(*

Clear the next move and name it with the string argument (loading a saved
environment of that name if it is present and the argument is not the default
nuemral name of the next move). This command is the only way to clear move
1 declarations.

133

*)

else if a = "clearall" then (ClearAll();TextIO.output(!LOGFILE,!THELINE);showall())

(*

Clear the Lestrade environment completely.

*)

else if a = "clearbreakout" then BREAKOUT:=false

(*

Clear an error condition. Use this judiciously, it is not a safe move.

*)

else if a = "basic" then (basic();say2(!THELINE))

else if a = "explicit" then (explicit();say2(!THELINE))

else if a = "fullversion" then (fullversion();say2(!THELINE))

else if a="clearallcaches" then clearallcaches()

(*

Version toggles, not used.

*)

else if a = "pause" then

(say ("Pausing in "^(!LOGNAME)^":\n>> type lines or type quit to resume");

TextIO.output(!LOGFILE,!THELINE);interface " ")

(*

Pause and wait for a user entered return to resume. Useful for looking at
what is happening at particular points in scripts.

134

*)

else if a = "" then () else saypause "Line is not a Lestrade command"

(* purge indentation from command lines *)

(* and despace0 (#" "::L) = despace0 L |

despace0 L = L

and despace s = implode(despace0(explode s)) *)

and unindent0 (#" "::L) = unindent0 L |

unindent0 (#"." :: #"." :: #"." :: #"." :: #" " ::L) = unindent0 L |

unindent0 L = L

and unindent s = implode(unindent0(explode s))

(*

The readline command executes a string of tokens as a Lestrade command.
More comments on commands and their format may be wanted.

*)

(* read a command line from a string *)

and Readline s = (THELINE2:=(unindent s)^"\n";

THELINE:=s^"\n";readline(tokenize (unindent s)))

(*

Readline tokenizes a string and calls readline. It also records the line for
logging.

*)

(* read command lines from standard output and receive feedback;

output is logged to a file, end with quit *)

135

and interface filename =

(if filename = "" orelse filename = " "

then () else LOGFILE:=TextIO.openOut((filename^".lti"));

(if not(!GREETED) then (versiondate();GREETED:=true) else ();

let val LINE = Inputline(TextIO.stdIn) in

if LINE = "quit\n" then (if filename <> " "

then TextIO.output(!LOGFILE,"quit") else ();

TextIO.flushOut(!LOGFILE);

if filename <> " "

then (TextIO.flushOut(!LOGFILE);closelog())

else TextIO.flushOut(!LOGFILE);say "Bye!")

else (if implode(rev(tl(rev(explode LINE)))) = "" then

TextIO.output(TextIO.stdOut,"The Inspector awaits your instructions: ")

else ();Flush();

Readline (implode(rev(tl(rev(explode LINE)))));interface "") end))

(* read commands from a first log file after clearing the Lestrade context,

logging to a second log file, and ending in the interface

where you can continue to enter commands logged to the second file. End with quit *)

and readfile filename1 filename2 =

if filename1 <> "" andalso not (fileexists filename1)

then saypause ("The book "^filename1^" does not exist.")

else if filename1 = "scratchtex" orelse filename2 = "scratchtex"

then saypause "Probably wrong readfile command!"

else(

(if filename1 <> "" then BREAKOUT:=false else ()

;if filename1 <> "" then THEORYNAME := filename1 else ();

if filename1 = "" then ()

else (ClearAll();READFILE:=TextIO.openIn((filename1^".lti")));

if filename2 = "" then ()

else (ClearAll();LOGNAME:=filename1;LOGNAME2:=filename2;

LOGFILE:=TextIO.openOut((filename2^".lti")));

(if not(!GREETED) then (versiondate();GREETED:=true) else ();

let val LINE = getline(!READFILE) in

if LINE = "quit\n" orelse (!BREAKOUT) then (BREAKOUT:=false;

TextIO.closeIn(!READFILE);

say("Done reading "^(!LOGNAME)^" to "^(!LOGNAME2)^":\n>>"

136

^" type lines or type quit to exit interface\n\nquit\n");

NAMESERIAL:=(!Maxfreshindex);

SAVEDTHEORIES:=

(!THEORYNAME,(!CONTEXT,!REWRITES,!SERIAL,!NAMESERIAL,!Maxfreshindex,!WORLDNAMES,!SAVEDWORLDS,!SAVEDREWRITES))

::(abstractdrop filename2 (!SAVEDTHEORIES)); if (!READFILEDEPTH)=0 then

interface "" else READFILEDEPTH :=(!READFILEDEPTH)-1)

(* fun ClearAll() = (clearallcaches();GREETED:=false;CONTEXT:=[World nil,World nil];

REWRITES:=[nil,nil];SERIAL:=0;NAMESERIAL:=0;Maxfreshindex:=0;WORLDNAMES:=["1","0"];SAVEDWORLDS:=nil;SAVEDREWRITES:=nil); *)

else (Readline (implode(rev(tl(rev(explode LINE)))));readfile "" "") end)))

and getline(targetfile) = let val PRELINE = Inputline(targetfile)

in

if length(explode PRELINE) <2 orelse not(hd(tl(rev(explode PRELINE))) = #"\\")

then PRELINE

else PRELINE^(getline(targetfile))

end

and readfile2 filename1 filename2 =

if filename1 <> "" andalso not (fileexists2 filename1)

then saypause ("The book "^filename1^" does not exist.")

else if filename1 = "scratch" orelse filename2 = "scratch"

then say "Probably wrong readfile command!"

else(

(if filename1 <> "" then BREAKOUT:=false else ()

;if filename1 <> "" then THEORYNAME := filename1 else ();

if filename1 = "" then ()

else (ClearAll();READING:=false;READFILE:=TextIO.openIn((filename1^".tex")));

if filename2 = "" then ()

else (ClearAll();LOGNAME:=filename1;LOGNAME2:=filename2;

LOGFILE:=TextIO.openOut(filename2^".tex");

GREETED:=true);

let val LINE =

getline(!READFILE)

137

in

if (not(!READING) andalso LINE = "quit\n") orelse (!BREAKOUT) then (BREAKOUT:=false;

TextIO.closeIn(!READFILE);

say0("Done reading "^(!LOGNAME)^" to "^(!LOGNAME2)^":\n>>"

^" type lines or type quit to exit interface\n\nquit\n");

TextIO.output(!LOGFILE, "quit\n"); TextIO.flushOut(!LOGFILE);

NAMESERIAL:=(!Maxfreshindex);

SAVEDTHEORIES:=

(!THEORYNAME,(!CONTEXT,!REWRITES,!SERIAL,!NAMESERIAL,!Maxfreshindex,!WORLDNAMES,!SAVEDWORLDS,!SAVEDREWRITES))

::(abstractdrop filename2 (!SAVEDTHEORIES)); if (!READFILEDEPTH)=0 then

interface "" else READFILEDEPTH :=(!READFILEDEPTH)-1)

else (if LINE=("\\"^"end{verbatim}\n") then

(READING:=false; TextIO.output(!LOGFILE,LINE);say0(LINE))

else if (!READING)

then Readline (implode(rev(tl(rev(explode LINE)))))

else if (* LINE="\\begin{verbatim}\n" orelse LINE="\\begin{verbatim} %Lestrade\n" orelse *) LINE="\\begin{verbatim}Lestrade execution:\n"

then (READING:=true;TextIO.output(!LOGFILE,"\\begin{verbatim}Lestrade execution:\n\n");say0("\\begin{verbatim}Lestrade execution:\n\n"))

else (TextIO.output(!LOGFILE,LINE);say0(LINE));

readfile2 "" "") end));

(* else (Readline (implode(rev(tl(rev(explode LINE)))));readfile "" "") end)); *)

fun fixargtest s t n = (deworld(getabstype (pi1(hd(stringtype s)))),

guardedfixarglist (deworld(getabstype (pi1(hd(stringtype s)))))

(getarglist n (tokenize t)));

(*

interface reads commands from the command line and gives feedback to
standard output and to a log file.

readfile reads commands from a Lestrade log file and gives feedback to
standard output and another Lestrade log file (by default scratch.lti). The
extension of Lestrade log files is .lti.

readfile2 is as readfile but works with .tex files as log files. The default
output is scratchtex.tex. Note that either log file clears the environment (a
script is not run after another script). readfile(2) can be run sensibly in
interface but not in log files.

Running either kind of log file sets the theory name to the name of the source
file.

*)

138

(* disaster cleanup -- close the files if you crash out of the interface *)

fun Cleanup() = (TextIO.closeOut(!LOGFILE); TextIO.closeIn(!READFILE));

fun senttype s = entitytype(sent s);

fun typetest1 s = display6(Cleantype1(pi1(hd(stringtype s))));

fun typetest2 s = display6(pi1(hd(stringtype s)));

(*

139

